Metamath Proof Explorer


Theorem mapdval5N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h
|- H = ( LHyp ` K )
mapdval4.u
|- U = ( ( DVecH ` K ) ` W )
mapdval4.s
|- S = ( LSubSp ` U )
mapdval4.f
|- F = ( LFnl ` U )
mapdval4.l
|- L = ( LKer ` U )
mapdval4.o
|- O = ( ( ocH ` K ) ` W )
mapdval4.m
|- M = ( ( mapd ` K ) ` W )
mapdval4.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdval4.t
|- ( ph -> T e. S )
Assertion mapdval5N
|- ( ph -> ( M ` T ) = U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } )

Proof

Step Hyp Ref Expression
1 mapdval4.h
 |-  H = ( LHyp ` K )
2 mapdval4.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdval4.s
 |-  S = ( LSubSp ` U )
4 mapdval4.f
 |-  F = ( LFnl ` U )
5 mapdval4.l
 |-  L = ( LKer ` U )
6 mapdval4.o
 |-  O = ( ( ocH ` K ) ` W )
7 mapdval4.m
 |-  M = ( ( mapd ` K ) ` W )
8 mapdval4.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 mapdval4.t
 |-  ( ph -> T e. S )
10 1 2 3 4 5 6 7 8 9 mapdval4N
 |-  ( ph -> ( M ` T ) = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) } )
11 iunrab
 |-  U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) }
12 10 11 eqtr4di
 |-  ( ph -> ( M ` T ) = U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } )