Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdval4.h | |- H = ( LHyp ` K ) |
|
mapdval4.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdval4.s | |- S = ( LSubSp ` U ) |
||
mapdval4.f | |- F = ( LFnl ` U ) |
||
mapdval4.l | |- L = ( LKer ` U ) |
||
mapdval4.o | |- O = ( ( ocH ` K ) ` W ) |
||
mapdval4.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdval4.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdval4.t | |- ( ph -> T e. S ) |
||
Assertion | mapdval5N | |- ( ph -> ( M ` T ) = U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdval4.h | |- H = ( LHyp ` K ) |
|
2 | mapdval4.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | mapdval4.s | |- S = ( LSubSp ` U ) |
|
4 | mapdval4.f | |- F = ( LFnl ` U ) |
|
5 | mapdval4.l | |- L = ( LKer ` U ) |
|
6 | mapdval4.o | |- O = ( ( ocH ` K ) ` W ) |
|
7 | mapdval4.m | |- M = ( ( mapd ` K ) ` W ) |
|
8 | mapdval4.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
9 | mapdval4.t | |- ( ph -> T e. S ) |
|
10 | 1 2 3 4 5 6 7 8 9 | mapdval4N | |- ( ph -> ( M ` T ) = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) } ) |
11 | iunrab | |- U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } = { f e. F | E. v e. T ( O ` { v } ) = ( L ` f ) } |
|
12 | 10 11 | eqtr4di | |- ( ph -> ( M ` T ) = U_ v e. T { f e. F | ( O ` { v } ) = ( L ` f ) } ) |