Metamath Proof Explorer


Theorem mapdval5N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h H = LHyp K
mapdval4.u U = DVecH K W
mapdval4.s S = LSubSp U
mapdval4.f F = LFnl U
mapdval4.l L = LKer U
mapdval4.o O = ocH K W
mapdval4.m M = mapd K W
mapdval4.k φ K HL W H
mapdval4.t φ T S
Assertion mapdval5N φ M T = v T f F | O v = L f

Proof

Step Hyp Ref Expression
1 mapdval4.h H = LHyp K
2 mapdval4.u U = DVecH K W
3 mapdval4.s S = LSubSp U
4 mapdval4.f F = LFnl U
5 mapdval4.l L = LKer U
6 mapdval4.o O = ocH K W
7 mapdval4.m M = mapd K W
8 mapdval4.k φ K HL W H
9 mapdval4.t φ T S
10 1 2 3 4 5 6 7 8 9 mapdval4N φ M T = f F | v T O v = L f
11 iunrab v T f F | O v = L f = f F | v T O v = L f
12 10 11 eqtr4di φ M T = v T f F | O v = L f