Metamath Proof Explorer


Theorem mapdval5N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h H=LHypK
mapdval4.u U=DVecHKW
mapdval4.s S=LSubSpU
mapdval4.f F=LFnlU
mapdval4.l L=LKerU
mapdval4.o O=ocHKW
mapdval4.m M=mapdKW
mapdval4.k φKHLWH
mapdval4.t φTS
Assertion mapdval5N φMT=vTfF|Ov=Lf

Proof

Step Hyp Ref Expression
1 mapdval4.h H=LHypK
2 mapdval4.u U=DVecHKW
3 mapdval4.s S=LSubSpU
4 mapdval4.f F=LFnlU
5 mapdval4.l L=LKerU
6 mapdval4.o O=ocHKW
7 mapdval4.m M=mapdKW
8 mapdval4.k φKHLWH
9 mapdval4.t φTS
10 1 2 3 4 5 6 7 8 9 mapdval4N φMT=fF|vTOv=Lf
11 iunrab vTfF|Ov=Lf=fF|vTOv=Lf
12 10 11 eqtr4di φMT=vTfF|Ov=Lf