Step |
Hyp |
Ref |
Expression |
1 |
|
mapdval4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdval4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdval4.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
4 |
|
mapdval4.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
5 |
|
mapdval4.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
6 |
|
mapdval4.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdval4.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdval4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdval4.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
10 |
1 2 3 4 5 6 7 8 9
|
mapdval4N |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = { 𝑓 ∈ 𝐹 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } ) |
11 |
|
iunrab |
⊢ ∪ 𝑣 ∈ 𝑇 { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ 𝐹 ∣ ∃ 𝑣 ∈ 𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } |
12 |
10 11
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑇 ) = ∪ 𝑣 ∈ 𝑇 { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } ) |