Metamath Proof Explorer


Theorem mapdval5N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval4.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdval4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.s 𝑆 = ( LSubSp ‘ 𝑈 )
mapdval4.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdval4.l 𝐿 = ( LKer ‘ 𝑈 )
mapdval4.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdval4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdval4.t ( 𝜑𝑇𝑆 )
Assertion mapdval5N ( 𝜑 → ( 𝑀𝑇 ) = 𝑣𝑇 { 𝑓𝐹 ∣ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )

Proof

Step Hyp Ref Expression
1 mapdval4.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdval4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdval4.s 𝑆 = ( LSubSp ‘ 𝑈 )
4 mapdval4.f 𝐹 = ( LFnl ‘ 𝑈 )
5 mapdval4.l 𝐿 = ( LKer ‘ 𝑈 )
6 mapdval4.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 mapdval4.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 mapdval4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 mapdval4.t ( 𝜑𝑇𝑆 )
10 1 2 3 4 5 6 7 8 9 mapdval4N ( 𝜑 → ( 𝑀𝑇 ) = { 𝑓𝐹 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )
11 iunrab 𝑣𝑇 { 𝑓𝐹 ∣ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } = { 𝑓𝐹 ∣ ∃ 𝑣𝑇 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) }
12 10 11 eqtr4di ( 𝜑 → ( 𝑀𝑇 ) = 𝑣𝑇 { 𝑓𝐹 ∣ ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿𝑓 ) } )