Step |
Hyp |
Ref |
Expression |
1 |
|
mapdordlem1a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdordlem1a.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdordlem1a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdordlem1a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdordlem1a.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
6 |
|
mapdordlem1a.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
mapdordlem1a.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
mapdordlem1a.t |
⊢ 𝑇 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝑌 } |
9 |
|
mapdordlem1a.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
10 |
|
mapdordlem1a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) |
12 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → 𝐽 ∈ 𝐹 ) |
14 |
1 2 3 6 5 7 12 13
|
dochlkr |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝐿 ‘ 𝐽 ) ∈ 𝑌 ) ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝐿 ‘ 𝐽 ) ∈ 𝑌 ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ) |
18 |
17
|
pm4.71rd |
⊢ ( 𝜑 → ( ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ) ) |
19 |
|
2fveq3 |
⊢ ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) = ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑔 = 𝐽 → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝑌 ↔ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |
22 |
21 8
|
elrab2 |
⊢ ( 𝐽 ∈ 𝑇 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |
23 |
9
|
lcfl1lem |
⊢ ( 𝐽 ∈ 𝐶 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ) |
24 |
23
|
anbi1i |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |
25 |
|
anass |
⊢ ( ( ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ↔ ( 𝐽 ∈ 𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ) |
26 |
|
an12 |
⊢ ( ( 𝐽 ∈ 𝐹 ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ) |
27 |
24 25 26
|
3bitri |
⊢ ( ( 𝐽 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ∧ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ) |
28 |
18 22 27
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐽 ∈ 𝑇 ↔ ( 𝐽 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) ) |