Metamath Proof Explorer


Theorem mapdordlem1bN

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypothesis mapdordlem1b.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
Assertion mapdordlem1bN ( 𝐽𝐶 ↔ ( 𝐽𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) = ( 𝐿𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 mapdordlem1b.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
2 1 lcfl1lem ( 𝐽𝐶 ↔ ( 𝐽𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) = ( 𝐿𝐽 ) ) )