Metamath Proof Explorer
Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
mapdordlem1b.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
|
Assertion |
mapdordlem1bN |
⊢ ( 𝐽 ∈ 𝐶 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mapdordlem1b.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
2 |
1
|
lcfl1lem |
⊢ ( 𝐽 ∈ 𝐶 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) = ( 𝐿 ‘ 𝐽 ) ) ) |