Metamath Proof Explorer


Theorem mapdordlem1

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypothesis mapdordlem1.t 𝑇 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) ∈ 𝑌 }
Assertion mapdordlem1 ( 𝐽𝑇 ↔ ( 𝐽𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) ∈ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 mapdordlem1.t 𝑇 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) ∈ 𝑌 }
2 2fveq3 ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝐿𝑔 ) ) = ( 𝑂 ‘ ( 𝐿𝐽 ) ) )
3 2 fveq2d ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) )
4 3 eleq1d ( 𝑔 = 𝐽 → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) ∈ 𝑌 ↔ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) ∈ 𝑌 ) )
5 4 1 elrab2 ( 𝐽𝑇 ↔ ( 𝐽𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝐽 ) ) ) ∈ 𝑌 ) )