Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mapdordlem1.t | ⊢ 𝑇 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝑌 } | |
Assertion | mapdordlem1 | ⊢ ( 𝐽 ∈ 𝑇 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdordlem1.t | ⊢ 𝑇 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝑌 } | |
2 | 2fveq3 | ⊢ ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) = ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) | |
3 | 2 | fveq2d | ⊢ ( 𝑔 = 𝐽 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ) |
4 | 3 | eleq1d | ⊢ ( 𝑔 = 𝐽 → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝑌 ↔ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |
5 | 4 1 | elrab2 | ⊢ ( 𝐽 ∈ 𝑇 ↔ ( 𝐽 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝐽 ) ) ) ∈ 𝑌 ) ) |