Metamath Proof Explorer


Theorem mapdordlem1

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypothesis mapdordlem1.t T = g F | O O L g Y
Assertion mapdordlem1 J T J F O O L J Y

Proof

Step Hyp Ref Expression
1 mapdordlem1.t T = g F | O O L g Y
2 2fveq3 g = J O L g = O L J
3 2 fveq2d g = J O O L g = O O L J
4 3 eleq1d g = J O O L g Y O O L J Y
5 4 1 elrab2 J T J F O O L J Y