Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdordlem1
Next ⟩
mapdordlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapdordlem1
Description:
Lemma for
mapdord
.
(Contributed by
NM
, 27-Jan-2015)
Ref
Expression
Hypothesis
mapdordlem1.t
⊢
T
=
g
∈
F
|
O
⁡
O
⁡
L
⁡
g
∈
Y
Assertion
mapdordlem1
⊢
J
∈
T
↔
J
∈
F
∧
O
⁡
O
⁡
L
⁡
J
∈
Y
Proof
Step
Hyp
Ref
Expression
1
mapdordlem1.t
⊢
T
=
g
∈
F
|
O
⁡
O
⁡
L
⁡
g
∈
Y
2
2fveq3
⊢
g
=
J
→
O
⁡
L
⁡
g
=
O
⁡
L
⁡
J
3
2
fveq2d
⊢
g
=
J
→
O
⁡
O
⁡
L
⁡
g
=
O
⁡
O
⁡
L
⁡
J
4
3
eleq1d
⊢
g
=
J
→
O
⁡
O
⁡
L
⁡
g
∈
Y
↔
O
⁡
O
⁡
L
⁡
J
∈
Y
5
4
1
elrab2
⊢
J
∈
T
↔
J
∈
F
∧
O
⁡
O
⁡
L
⁡
J
∈
Y