Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mapdordlem1.t | |- T = { g e. F | ( O ` ( O ` ( L ` g ) ) ) e. Y } | |
| Assertion | mapdordlem1 | |- ( J e. T <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) e. Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapdordlem1.t |  |-  T = { g e. F | ( O ` ( O ` ( L ` g ) ) ) e. Y } | |
| 2 | 2fveq3 | |- ( g = J -> ( O ` ( L ` g ) ) = ( O ` ( L ` J ) ) ) | |
| 3 | 2 | fveq2d | |- ( g = J -> ( O ` ( O ` ( L ` g ) ) ) = ( O ` ( O ` ( L ` J ) ) ) ) | 
| 4 | 3 | eleq1d | |- ( g = J -> ( ( O ` ( O ` ( L ` g ) ) ) e. Y <-> ( O ` ( O ` ( L ` J ) ) ) e. Y ) ) | 
| 5 | 4 1 | elrab2 | |- ( J e. T <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) e. Y ) ) |