Metamath Proof Explorer


Theorem mapdord

Description: Ordering property of the map defined by df-mapd . Property (b) of Baer p. 40. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdord.h
|- H = ( LHyp ` K )
mapdord.u
|- U = ( ( DVecH ` K ) ` W )
mapdord.s
|- S = ( LSubSp ` U )
mapdord.m
|- M = ( ( mapd ` K ) ` W )
mapdord.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdord.x
|- ( ph -> X e. S )
mapdord.y
|- ( ph -> Y e. S )
Assertion mapdord
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) )

Proof

Step Hyp Ref Expression
1 mapdord.h
 |-  H = ( LHyp ` K )
2 mapdord.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdord.s
 |-  S = ( LSubSp ` U )
4 mapdord.m
 |-  M = ( ( mapd ` K ) ` W )
5 mapdord.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 mapdord.x
 |-  ( ph -> X e. S )
7 mapdord.y
 |-  ( ph -> Y e. S )
8 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
9 eqid
 |-  ( LSAtoms ` U ) = ( LSAtoms ` U )
10 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
11 eqid
 |-  ( LSHyp ` U ) = ( LSHyp ` U )
12 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
13 eqid
 |-  { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) e. ( LSHyp ` U ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) e. ( LSHyp ` U ) }
14 eqid
 |-  { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) } = { g e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` g ) ) ) = ( ( LKer ` U ) ` g ) }
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mapdordlem2
 |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) )