Step |
Hyp |
Ref |
Expression |
1 |
|
mapdord.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdord.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdord.s |
|- S = ( LSubSp ` U ) |
4 |
|
mapdord.m |
|- M = ( ( mapd ` K ) ` W ) |
5 |
|
mapdord.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
mapdord.x |
|- ( ph -> X e. S ) |
7 |
|
mapdord.y |
|- ( ph -> Y e. S ) |
8 |
1 2 3 4 5 6 7
|
mapdord |
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) |
9 |
1 2 3 4 5 7 6
|
mapdord |
|- ( ph -> ( ( M ` Y ) C_ ( M ` X ) <-> Y C_ X ) ) |
10 |
8 9
|
anbi12d |
|- ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) <-> ( X C_ Y /\ Y C_ X ) ) ) |
11 |
|
eqss |
|- ( ( M ` X ) = ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) ) |
12 |
|
eqss |
|- ( X = Y <-> ( X C_ Y /\ Y C_ X ) ) |
13 |
10 11 12
|
3bitr4g |
|- ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) |