| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdord.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdord.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdord.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
mapdord.m |
|- M = ( ( mapd ` K ) ` W ) |
| 5 |
|
mapdord.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
mapdord.x |
|- ( ph -> X e. S ) |
| 7 |
|
mapdord.y |
|- ( ph -> Y e. S ) |
| 8 |
1 2 3 4 5 6 7
|
mapdord |
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) |
| 9 |
1 2 3 4 5 7 6
|
mapdord |
|- ( ph -> ( ( M ` Y ) C_ ( M ` X ) <-> Y C_ X ) ) |
| 10 |
8 9
|
anbi12d |
|- ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) <-> ( X C_ Y /\ Y C_ X ) ) ) |
| 11 |
|
eqss |
|- ( ( M ` X ) = ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) ) |
| 12 |
|
eqss |
|- ( X = Y <-> ( X C_ Y /\ Y C_ X ) ) |
| 13 |
10 11 12
|
3bitr4g |
|- ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) ) |