Metamath Proof Explorer


Theorem mapd11

Description: The map defined by df-mapd is one-to-one. Property (c) of Baer p. 40. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdord.h
|- H = ( LHyp ` K )
mapdord.u
|- U = ( ( DVecH ` K ) ` W )
mapdord.s
|- S = ( LSubSp ` U )
mapdord.m
|- M = ( ( mapd ` K ) ` W )
mapdord.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdord.x
|- ( ph -> X e. S )
mapdord.y
|- ( ph -> Y e. S )
Assertion mapd11
|- ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) )

Proof

Step Hyp Ref Expression
1 mapdord.h
 |-  H = ( LHyp ` K )
2 mapdord.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdord.s
 |-  S = ( LSubSp ` U )
4 mapdord.m
 |-  M = ( ( mapd ` K ) ` W )
5 mapdord.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 mapdord.x
 |-  ( ph -> X e. S )
7 mapdord.y
 |-  ( ph -> Y e. S )
8 1 2 3 4 5 6 7 mapdord
 |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) )
9 1 2 3 4 5 7 6 mapdord
 |-  ( ph -> ( ( M ` Y ) C_ ( M ` X ) <-> Y C_ X ) )
10 8 9 anbi12d
 |-  ( ph -> ( ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) <-> ( X C_ Y /\ Y C_ X ) ) )
11 eqss
 |-  ( ( M ` X ) = ( M ` Y ) <-> ( ( M ` X ) C_ ( M ` Y ) /\ ( M ` Y ) C_ ( M ` X ) ) )
12 eqss
 |-  ( X = Y <-> ( X C_ Y /\ Y C_ X ) )
13 10 11 12 3bitr4g
 |-  ( ph -> ( ( M ` X ) = ( M ` Y ) <-> X = Y ) )