Metamath Proof Explorer


Theorem mapddlssN

Description: The mapping of a subspace of vector space H to the dual space is a subspace of the dual space. TODO: Make this obsolete, use mapdcl2 instead. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapddlss.h
|- H = ( LHyp ` K )
mapddlss.m
|- M = ( ( mapd ` K ) ` W )
mapddlss.u
|- U = ( ( DVecH ` K ) ` W )
mapddlss.s
|- S = ( LSubSp ` U )
mapddlss.d
|- D = ( LDual ` U )
mapddlss.t
|- T = ( LSubSp ` D )
mapddlss.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapddlss.r
|- ( ph -> R e. S )
Assertion mapddlssN
|- ( ph -> ( M ` R ) e. T )

Proof

Step Hyp Ref Expression
1 mapddlss.h
 |-  H = ( LHyp ` K )
2 mapddlss.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapddlss.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapddlss.s
 |-  S = ( LSubSp ` U )
5 mapddlss.d
 |-  D = ( LDual ` U )
6 mapddlss.t
 |-  T = ( LSubSp ` D )
7 mapddlss.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 mapddlss.r
 |-  ( ph -> R e. S )
9 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
10 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
11 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
12 1 3 4 9 10 11 2 7 8 mapdval
 |-  ( ph -> ( M ` R ) = { f e. ( LFnl ` U ) | ( ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) C_ R ) } )
13 eqid
 |-  { f e. ( LFnl ` U ) | ( ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) C_ R ) } = { f e. ( LFnl ` U ) | ( ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) C_ R ) }
14 1 11 3 4 9 10 5 6 13 7 8 lclkrs
 |-  ( ph -> { f e. ( LFnl ` U ) | ( ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) /\ ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) C_ R ) } e. T )
15 12 14 eqeltrd
 |-  ( ph -> ( M ` R ) e. T )