Step |
Hyp |
Ref |
Expression |
1 |
|
mapdsn.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdsn.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapdsn.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapdsn.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapdsn.v |
|- V = ( Base ` U ) |
6 |
|
mapdsn.n |
|- N = ( LSpan ` U ) |
7 |
|
mapdsn.f |
|- F = ( LFnl ` U ) |
8 |
|
mapdsn.l |
|- L = ( LKer ` U ) |
9 |
|
mapdsn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
mapdsn.x |
|- ( ph -> X e. V ) |
11 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
12 |
1 4 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
13 |
5 11 6
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
14 |
12 10 13
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
15 |
1 4 11 7 8 2 3 9 14
|
mapdval |
|- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) } ) |
16 |
9
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
10
|
snssd |
|- ( ph -> { X } C_ V ) |
18 |
5 6
|
lspssv |
|- ( ( U e. LMod /\ { X } C_ V ) -> ( N ` { X } ) C_ V ) |
19 |
12 17 18
|
syl2anc |
|- ( ph -> ( N ` { X } ) C_ V ) |
20 |
19
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( N ` { X } ) C_ V ) |
21 |
|
simprr |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) |
22 |
1 4 5 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) C_ V /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) -> ( O ` ( N ` { X } ) ) C_ ( O ` ( O ` ( L ` f ) ) ) ) |
23 |
16 20 21 22
|
syl3anc |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( O ` ( N ` { X } ) ) C_ ( O ` ( O ` ( L ` f ) ) ) ) |
24 |
1 4 2 5 6 9 17
|
dochocsp |
|- ( ph -> ( O ` ( N ` { X } ) ) = ( O ` { X } ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( O ` ( N ` { X } ) ) = ( O ` { X } ) ) |
26 |
|
simprl |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) |
27 |
23 25 26
|
3sstr3d |
|- ( ( ( ph /\ f e. F ) /\ ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) -> ( O ` { X } ) C_ ( L ` f ) ) |
28 |
9
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( K e. HL /\ W e. H ) ) |
29 |
|
simplr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> f e. F ) |
30 |
10
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> X e. V ) |
31 |
|
simpr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` { X } ) C_ ( L ` f ) ) |
32 |
1 2 4 5 7 8 28 29 30 31
|
lcfl9a |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) |
33 |
12
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> U e. LMod ) |
34 |
5 7 8 33 29
|
lkrssv |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( L ` f ) C_ V ) |
35 |
1 4 5 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` f ) C_ V /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` ( L ` f ) ) C_ ( O ` ( O ` { X } ) ) ) |
36 |
28 34 31 35
|
syl3anc |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` ( L ` f ) ) C_ ( O ` ( O ` { X } ) ) ) |
37 |
1 4 2 5 6 9 10
|
dochocsn |
|- ( ph -> ( O ` ( O ` { X } ) ) = ( N ` { X } ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` ( O ` { X } ) ) = ( N ` { X } ) ) |
39 |
36 38
|
sseqtrd |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) |
40 |
32 39
|
jca |
|- ( ( ( ph /\ f e. F ) /\ ( O ` { X } ) C_ ( L ` f ) ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) ) |
41 |
27 40
|
impbida |
|- ( ( ph /\ f e. F ) -> ( ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) <-> ( O ` { X } ) C_ ( L ` f ) ) ) |
42 |
41
|
rabbidva |
|- ( ph -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ ( N ` { X } ) ) } = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |
43 |
15 42
|
eqtrd |
|- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |