| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdsn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdsn.o |
|- O = ( ( ocH ` K ) ` W ) |
| 3 |
|
mapdsn.m |
|- M = ( ( mapd ` K ) ` W ) |
| 4 |
|
mapdsn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
mapdsn.v |
|- V = ( Base ` U ) |
| 6 |
|
mapdsn.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdsn.f |
|- F = ( LFnl ` U ) |
| 8 |
|
mapdsn.l |
|- L = ( LKer ` U ) |
| 9 |
|
mapdsn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
mapdsn.x |
|- ( ph -> X e. V ) |
| 11 |
|
mapdsn2.e |
|- ( ph -> ( L ` G ) = ( O ` { X } ) ) |
| 12 |
1 2 3 4 5 6 7 8 9 10
|
mapdsn |
|- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |
| 13 |
11
|
sseq1d |
|- ( ph -> ( ( L ` G ) C_ ( L ` f ) <-> ( O ` { X } ) C_ ( L ` f ) ) ) |
| 14 |
13
|
rabbidv |
|- ( ph -> { f e. F | ( L ` G ) C_ ( L ` f ) } = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |
| 15 |
12 14
|
eqtr4d |
|- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } ) |