Metamath Proof Explorer


Theorem mapdsn2

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h
|- H = ( LHyp ` K )
mapdsn.o
|- O = ( ( ocH ` K ) ` W )
mapdsn.m
|- M = ( ( mapd ` K ) ` W )
mapdsn.u
|- U = ( ( DVecH ` K ) ` W )
mapdsn.v
|- V = ( Base ` U )
mapdsn.n
|- N = ( LSpan ` U )
mapdsn.f
|- F = ( LFnl ` U )
mapdsn.l
|- L = ( LKer ` U )
mapdsn.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdsn.x
|- ( ph -> X e. V )
mapdsn2.e
|- ( ph -> ( L ` G ) = ( O ` { X } ) )
Assertion mapdsn2
|- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } )

Proof

Step Hyp Ref Expression
1 mapdsn.h
 |-  H = ( LHyp ` K )
2 mapdsn.o
 |-  O = ( ( ocH ` K ) ` W )
3 mapdsn.m
 |-  M = ( ( mapd ` K ) ` W )
4 mapdsn.u
 |-  U = ( ( DVecH ` K ) ` W )
5 mapdsn.v
 |-  V = ( Base ` U )
6 mapdsn.n
 |-  N = ( LSpan ` U )
7 mapdsn.f
 |-  F = ( LFnl ` U )
8 mapdsn.l
 |-  L = ( LKer ` U )
9 mapdsn.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 mapdsn.x
 |-  ( ph -> X e. V )
11 mapdsn2.e
 |-  ( ph -> ( L ` G ) = ( O ` { X } ) )
12 1 2 3 4 5 6 7 8 9 10 mapdsn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( O ` { X } ) C_ ( L ` f ) } )
13 11 sseq1d
 |-  ( ph -> ( ( L ` G ) C_ ( L ` f ) <-> ( O ` { X } ) C_ ( L ` f ) ) )
14 13 rabbidv
 |-  ( ph -> { f e. F | ( L ` G ) C_ ( L ` f ) } = { f e. F | ( O ` { X } ) C_ ( L ` f ) } )
15 12 14 eqtr4d
 |-  ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } )