Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdsn.h | |- H = ( LHyp ` K ) |
|
mapdsn.o | |- O = ( ( ocH ` K ) ` W ) |
||
mapdsn.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdsn.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdsn.v | |- V = ( Base ` U ) |
||
mapdsn.n | |- N = ( LSpan ` U ) |
||
mapdsn.f | |- F = ( LFnl ` U ) |
||
mapdsn.l | |- L = ( LKer ` U ) |
||
mapdsn.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdsn.x | |- ( ph -> X e. V ) |
||
mapdsn2.e | |- ( ph -> ( L ` G ) = ( O ` { X } ) ) |
||
Assertion | mapdsn2 | |- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdsn.h | |- H = ( LHyp ` K ) |
|
2 | mapdsn.o | |- O = ( ( ocH ` K ) ` W ) |
|
3 | mapdsn.m | |- M = ( ( mapd ` K ) ` W ) |
|
4 | mapdsn.u | |- U = ( ( DVecH ` K ) ` W ) |
|
5 | mapdsn.v | |- V = ( Base ` U ) |
|
6 | mapdsn.n | |- N = ( LSpan ` U ) |
|
7 | mapdsn.f | |- F = ( LFnl ` U ) |
|
8 | mapdsn.l | |- L = ( LKer ` U ) |
|
9 | mapdsn.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
10 | mapdsn.x | |- ( ph -> X e. V ) |
|
11 | mapdsn2.e | |- ( ph -> ( L ` G ) = ( O ` { X } ) ) |
|
12 | 1 2 3 4 5 6 7 8 9 10 | mapdsn | |- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |
13 | 11 | sseq1d | |- ( ph -> ( ( L ` G ) C_ ( L ` f ) <-> ( O ` { X } ) C_ ( L ` f ) ) ) |
14 | 13 | rabbidv | |- ( ph -> { f e. F | ( L ` G ) C_ ( L ` f ) } = { f e. F | ( O ` { X } ) C_ ( L ` f ) } ) |
15 | 12 14 | eqtr4d | |- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } ) |