Metamath Proof Explorer


Theorem mapdsn2

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdsn.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdsn.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdsn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdsn.v 𝑉 = ( Base ‘ 𝑈 )
mapdsn.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdsn.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdsn.l 𝐿 = ( LKer ‘ 𝑈 )
mapdsn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdsn.x ( 𝜑𝑋𝑉 )
mapdsn2.e ( 𝜑 → ( 𝐿𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) )
Assertion mapdsn2 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) } )

Proof

Step Hyp Ref Expression
1 mapdsn.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdsn.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdsn.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
4 mapdsn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 mapdsn.v 𝑉 = ( Base ‘ 𝑈 )
6 mapdsn.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdsn.f 𝐹 = ( LFnl ‘ 𝑈 )
8 mapdsn.l 𝐿 = ( LKer ‘ 𝑈 )
9 mapdsn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 mapdsn.x ( 𝜑𝑋𝑉 )
11 mapdsn2.e ( 𝜑 → ( 𝐿𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) )
12 1 2 3 4 5 6 7 8 9 10 mapdsn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿𝑓 ) } )
13 11 sseq1d ( 𝜑 → ( ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿𝑓 ) ) )
14 13 rabbidv ( 𝜑 → { 𝑓𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) } = { 𝑓𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿𝑓 ) } )
15 12 14 eqtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) } )