Step |
Hyp |
Ref |
Expression |
1 |
|
mapdsn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdsn.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdsn.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdsn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdsn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
mapdsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdsn.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
8 |
|
mapdsn.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
9 |
|
mapdsn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
mapdsn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
|
mapdsn2.e |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
mapdsn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |
13 |
11
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑓 ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) ) |
14 |
13
|
rabbidv |
⊢ ( 𝜑 → { 𝑓 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |
15 |
12 14
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |