Metamath Proof Explorer


Theorem mapdsn3

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses mapdsn3.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdsn3.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdsn3.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdsn3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdsn3.v 𝑉 = ( Base ‘ 𝑈 )
mapdsn3.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdsn3.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdsn3.l 𝐿 = ( LKer ‘ 𝑈 )
mapdsn3.d 𝐷 = ( LDual ‘ 𝑈 )
mapdsn3.p 𝑃 = ( LSpan ‘ 𝐷 )
mapdsn3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdsn3.x ( 𝜑𝑋𝑉 )
mapdsn3.g ( 𝜑𝐺𝐹 )
mapdsn3.e ( 𝜑 → ( 𝐿𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) )
Assertion mapdsn3 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑃 ‘ { 𝐺 } ) )

Proof

Step Hyp Ref Expression
1 mapdsn3.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdsn3.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdsn3.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
4 mapdsn3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 mapdsn3.v 𝑉 = ( Base ‘ 𝑈 )
6 mapdsn3.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdsn3.f 𝐹 = ( LFnl ‘ 𝑈 )
8 mapdsn3.l 𝐿 = ( LKer ‘ 𝑈 )
9 mapdsn3.d 𝐷 = ( LDual ‘ 𝑈 )
10 mapdsn3.p 𝑃 = ( LSpan ‘ 𝐷 )
11 mapdsn3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 mapdsn3.x ( 𝜑𝑋𝑉 )
13 mapdsn3.g ( 𝜑𝐺𝐹 )
14 mapdsn3.e ( 𝜑 → ( 𝐿𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) )
15 1 2 3 4 5 6 7 8 11 12 14 mapdsn2 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) } )
16 1 4 11 dvhlvec ( 𝜑𝑈 ∈ LVec )
17 7 8 9 10 16 13 ldual1dim ( 𝜑 → ( 𝑃 ‘ { 𝐺 } ) = { 𝑓𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑓 ) } )
18 15 17 eqtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑃 ‘ { 𝐺 } ) )