Step |
Hyp |
Ref |
Expression |
1 |
|
mapdsn3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdsn3.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdsn3.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdsn3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdsn3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
mapdsn3.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdsn3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
8 |
|
mapdsn3.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
9 |
|
mapdsn3.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
10 |
|
mapdsn3.p |
⊢ 𝑃 = ( LSpan ‘ 𝐷 ) |
11 |
|
mapdsn3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
mapdsn3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
13 |
|
mapdsn3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
14 |
|
mapdsn3.e |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝑂 ‘ { 𝑋 } ) ) |
15 |
1 2 3 4 5 6 7 8 11 12 14
|
mapdsn2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |
16 |
1 4 11
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
17 |
7 8 9 10 16 13
|
ldual1dim |
⊢ ( 𝜑 → ( 𝑃 ‘ { 𝐺 } ) = { 𝑓 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |
18 |
15 17
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑃 ‘ { 𝐺 } ) ) |