| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapd1dim2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapd1dim2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapd1dim2.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 4 |  | mapd1dim2.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 5 |  | mapd1dim2.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 6 |  | mapd1dim2.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | mapd1dim2.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapd1dim2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | mapd1dim2.t | ⊢ ( 𝜑  →  𝑄  ∈  𝐴 ) | 
						
							| 10 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 11 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 12 | 10 3 11 9 | lsatlssel | ⊢ ( 𝜑  →  𝑄  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 13 | 1 2 10 4 5 6 7 8 12 | mapdval4N | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑄 )  =  { 𝑓  ∈  𝐹  ∣  ∃ 𝑣  ∈  𝑄 ( 𝑂 ‘ { 𝑣 } )  =  ( 𝐿 ‘ 𝑓 ) } ) |