| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapd1dim2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapd1dim2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapd1dim2.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 4 |
|
mapd1dim2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 5 |
|
mapd1dim2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 6 |
|
mapd1dim2.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
mapd1dim2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapd1dim2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
mapd1dim2.t |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 11 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 12 |
10 3 11 9
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 13 |
1 2 10 4 5 6 7 8 12
|
mapdval4N |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) = { 𝑓 ∈ 𝐹 ∣ ∃ 𝑣 ∈ 𝑄 ( 𝑂 ‘ { 𝑣 } ) = ( 𝐿 ‘ 𝑓 ) } ) |