Metamath Proof Explorer


Theorem mapd1dim2lem1N

Description: Value of the map defined by df-mapd at an atom. (Contributed by NM, 10-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapd1dim2.h
|- H = ( LHyp ` K )
mapd1dim2.u
|- U = ( ( DVecH ` K ) ` W )
mapd1dim2.a
|- A = ( LSAtoms ` U )
mapd1dim2.f
|- F = ( LFnl ` U )
mapd1dim2.l
|- L = ( LKer ` U )
mapd1dim2.o
|- O = ( ( ocH ` K ) ` W )
mapd1dim2.m
|- M = ( ( mapd ` K ) ` W )
mapd1dim2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapd1dim2.t
|- ( ph -> Q e. A )
Assertion mapd1dim2lem1N
|- ( ph -> ( M ` Q ) = { f e. F | E. v e. Q ( O ` { v } ) = ( L ` f ) } )

Proof

Step Hyp Ref Expression
1 mapd1dim2.h
 |-  H = ( LHyp ` K )
2 mapd1dim2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapd1dim2.a
 |-  A = ( LSAtoms ` U )
4 mapd1dim2.f
 |-  F = ( LFnl ` U )
5 mapd1dim2.l
 |-  L = ( LKer ` U )
6 mapd1dim2.o
 |-  O = ( ( ocH ` K ) ` W )
7 mapd1dim2.m
 |-  M = ( ( mapd ` K ) ` W )
8 mapd1dim2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 mapd1dim2.t
 |-  ( ph -> Q e. A )
10 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
11 1 2 8 dvhlmod
 |-  ( ph -> U e. LMod )
12 10 3 11 9 lsatlssel
 |-  ( ph -> Q e. ( LSubSp ` U ) )
13 1 2 10 4 5 6 7 8 12 mapdval4N
 |-  ( ph -> ( M ` Q ) = { f e. F | E. v e. Q ( O ` { v } ) = ( L ` f ) } )