Description: Value of the map defined by df-mapd at an atom. (Contributed by NM, 10-Feb-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapd1dim2.h | |- H = ( LHyp ` K ) |
|
| mapd1dim2.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| mapd1dim2.a | |- A = ( LSAtoms ` U ) |
||
| mapd1dim2.f | |- F = ( LFnl ` U ) |
||
| mapd1dim2.l | |- L = ( LKer ` U ) |
||
| mapd1dim2.o | |- O = ( ( ocH ` K ) ` W ) |
||
| mapd1dim2.m | |- M = ( ( mapd ` K ) ` W ) |
||
| mapd1dim2.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| mapd1dim2.t | |- ( ph -> Q e. A ) |
||
| Assertion | mapd1dim2lem1N | |- ( ph -> ( M ` Q ) = { f e. F | E. v e. Q ( O ` { v } ) = ( L ` f ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapd1dim2.h | |- H = ( LHyp ` K ) |
|
| 2 | mapd1dim2.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 3 | mapd1dim2.a | |- A = ( LSAtoms ` U ) |
|
| 4 | mapd1dim2.f | |- F = ( LFnl ` U ) |
|
| 5 | mapd1dim2.l | |- L = ( LKer ` U ) |
|
| 6 | mapd1dim2.o | |- O = ( ( ocH ` K ) ` W ) |
|
| 7 | mapd1dim2.m | |- M = ( ( mapd ` K ) ` W ) |
|
| 8 | mapd1dim2.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 9 | mapd1dim2.t | |- ( ph -> Q e. A ) |
|
| 10 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
| 11 | 1 2 8 | dvhlmod | |- ( ph -> U e. LMod ) |
| 12 | 10 3 11 9 | lsatlssel | |- ( ph -> Q e. ( LSubSp ` U ) ) |
| 13 | 1 2 10 4 5 6 7 8 12 | mapdval4N | |- ( ph -> ( M ` Q ) = { f e. F | E. v e. Q ( O ` { v } ) = ( L ` f ) } ) |