Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrval.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdrval.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapdrval.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapdrval.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapdrval.s |
|- S = ( LSubSp ` U ) |
6 |
|
mapdrval.f |
|- F = ( LFnl ` U ) |
7 |
|
mapdrval.l |
|- L = ( LKer ` U ) |
8 |
|
mapdrval.d |
|- D = ( LDual ` U ) |
9 |
|
mapdrval.t |
|- T = ( LSubSp ` D ) |
10 |
|
mapdrval.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
11 |
|
mapdrval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
mapdrval.r |
|- ( ph -> R e. T ) |
13 |
|
mapdrval.e |
|- ( ph -> R C_ C ) |
14 |
|
mapdrval.q |
|- Q = U_ h e. R ( O ` ( L ` h ) ) |
15 |
|
mapdrval.v |
|- V = ( Base ` U ) |
16 |
|
mapdrvallem2.a |
|- A = ( LSAtoms ` U ) |
17 |
|
mapdrvallem2.n |
|- N = ( LSpan ` U ) |
18 |
|
mapdrvallem2.z |
|- .0. = ( 0g ` U ) |
19 |
|
mapdrvallem2.y |
|- Y = ( 0g ` D ) |
20 |
|
eleq1 |
|- ( f = Y -> ( f e. R <-> Y e. R ) ) |
21 |
11
|
3ad2ant1 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> ( K e. HL /\ W e. H ) ) |
22 |
21
|
adantr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> ( K e. HL /\ W e. H ) ) |
23 |
|
simpl2 |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> f e. C ) |
24 |
|
simpr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> f =/= Y ) |
25 |
|
eldifsn |
|- ( f e. ( C \ { Y } ) <-> ( f e. C /\ f =/= Y ) ) |
26 |
23 24 25
|
sylanbrc |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> f e. ( C \ { Y } ) ) |
27 |
1 2 4 15 17 18 6 7 8 19 10 22 26
|
lcfl8b |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> E. x e. ( V \ { .0. } ) ( O ` ( L ` f ) ) = ( N ` { x } ) ) |
28 |
|
simp1l3 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( O ` ( L ` f ) ) C_ Q ) |
29 |
|
eqimss2 |
|- ( ( O ` ( L ` f ) ) = ( N ` { x } ) -> ( N ` { x } ) C_ ( O ` ( L ` f ) ) ) |
30 |
29
|
3ad2ant3 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( N ` { x } ) C_ ( O ` ( L ` f ) ) ) |
31 |
1 4 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
32 |
31
|
3ad2ant1 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> U e. LMod ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> U e. LMod ) |
34 |
33
|
3ad2ant1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> U e. LMod ) |
35 |
22
|
3ad2ant1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( K e. HL /\ W e. H ) ) |
36 |
10
|
lcfl1lem |
|- ( f e. C <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) ) |
37 |
36
|
simplbi |
|- ( f e. C -> f e. F ) |
38 |
37
|
3ad2ant2 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> f e. F ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> f e. F ) |
40 |
39
|
3ad2ant1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> f e. F ) |
41 |
15 6 7 34 40
|
lkrssv |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( L ` f ) C_ V ) |
42 |
1 4 15 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` f ) C_ V ) -> ( O ` ( L ` f ) ) e. S ) |
43 |
35 41 42
|
syl2anc |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( O ` ( L ` f ) ) e. S ) |
44 |
|
eldifi |
|- ( x e. ( V \ { .0. } ) -> x e. V ) |
45 |
44
|
3ad2ant2 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> x e. V ) |
46 |
15 5 17 34 43 45
|
lspsnel5 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( x e. ( O ` ( L ` f ) ) <-> ( N ` { x } ) C_ ( O ` ( L ` f ) ) ) ) |
47 |
30 46
|
mpbird |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> x e. ( O ` ( L ` f ) ) ) |
48 |
28 47
|
sseldd |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> x e. Q ) |
49 |
48 14
|
eleqtrdi |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> x e. U_ h e. R ( O ` ( L ` h ) ) ) |
50 |
|
eliun |
|- ( x e. U_ h e. R ( O ` ( L ` h ) ) <-> E. h e. R x e. ( O ` ( L ` h ) ) ) |
51 |
49 50
|
sylib |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> E. h e. R x e. ( O ` ( L ` h ) ) ) |
52 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
53 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
54 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
55 |
1 4 11
|
dvhlvec |
|- ( ph -> U e. LVec ) |
56 |
55
|
3ad2ant1 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> U e. LVec ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> U e. LVec ) |
58 |
57
|
3ad2ant1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> U e. LVec ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> U e. LVec ) |
60 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> h e. R ) |
61 |
|
simp1l1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ph ) |
62 |
61
|
adantr |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> ph ) |
63 |
62 13
|
syl |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> R C_ C ) |
64 |
63
|
sseld |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> ( h e. R -> h e. C ) ) |
65 |
10
|
lcfl1lem |
|- ( h e. C <-> ( h e. F /\ ( O ` ( O ` ( L ` h ) ) ) = ( L ` h ) ) ) |
66 |
65
|
simplbi |
|- ( h e. C -> h e. F ) |
67 |
64 66
|
syl6 |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> ( h e. R -> h e. F ) ) |
68 |
60 67
|
mpd |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> h e. F ) |
69 |
68
|
adantr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> h e. F ) |
70 |
40
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> f e. F ) |
71 |
|
simpll3 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( O ` ( L ` f ) ) = ( N ` { x } ) ) |
72 |
34
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> U e. LMod ) |
73 |
35
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( K e. HL /\ W e. H ) ) |
74 |
15 6 7 72 69
|
lkrssv |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( L ` h ) C_ V ) |
75 |
1 4 15 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` h ) C_ V ) -> ( O ` ( L ` h ) ) e. S ) |
76 |
73 74 75
|
syl2anc |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( O ` ( L ` h ) ) e. S ) |
77 |
|
simpr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> x e. ( O ` ( L ` h ) ) ) |
78 |
5 17 72 76 77
|
lspsnel5a |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( N ` { x } ) C_ ( O ` ( L ` h ) ) ) |
79 |
|
simpll2 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> x e. ( V \ { .0. } ) ) |
80 |
15 17 18 16 72 79
|
lsatlspsn |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( N ` { x } ) e. A ) |
81 |
1 2 4 18 16 6 7 73 69
|
dochsat0 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( ( O ` ( L ` h ) ) e. A \/ ( O ` ( L ` h ) ) = { .0. } ) ) |
82 |
18 16 59 80 81
|
lsatcmp2 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( ( N ` { x } ) C_ ( O ` ( L ` h ) ) <-> ( N ` { x } ) = ( O ` ( L ` h ) ) ) ) |
83 |
78 82
|
mpbid |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( N ` { x } ) = ( O ` ( L ` h ) ) ) |
84 |
71 83
|
eqtr2d |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( O ` ( L ` h ) ) = ( O ` ( L ` f ) ) ) |
85 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
86 |
61 13
|
syl |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> R C_ C ) |
87 |
86
|
sselda |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> h e. C ) |
88 |
87
|
adantr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> h e. C ) |
89 |
1 85 2 4 6 7 10 73 69
|
lcfl5 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( h e. C <-> ( L ` h ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
90 |
88 89
|
mpbid |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( L ` h ) e. ran ( ( DIsoH ` K ) ` W ) ) |
91 |
|
simp1l2 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> f e. C ) |
92 |
91
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> f e. C ) |
93 |
1 85 2 4 6 7 10 73 70
|
lcfl5 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( f e. C <-> ( L ` f ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
94 |
92 93
|
mpbid |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( L ` f ) e. ran ( ( DIsoH ` K ) ` W ) ) |
95 |
1 85 2 73 90 94
|
doch11 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( ( O ` ( L ` h ) ) = ( O ` ( L ` f ) ) <-> ( L ` h ) = ( L ` f ) ) ) |
96 |
84 95
|
mpbid |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> ( L ` h ) = ( L ` f ) ) |
97 |
52 53 6 7 8 54 59 69 70 96
|
eqlkr4 |
|- ( ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) /\ x e. ( O ` ( L ` h ) ) ) -> E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) ) |
98 |
97
|
ex |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) /\ h e. R ) -> ( x e. ( O ` ( L ` h ) ) -> E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) ) ) |
99 |
98
|
reximdva |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( E. h e. R x e. ( O ` ( L ` h ) ) -> E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) ) ) |
100 |
51 99
|
mpd |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) ) |
101 |
|
eleq1 |
|- ( f = ( r ( .s ` D ) h ) -> ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) |
102 |
101
|
reximi |
|- ( E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) -> E. r e. ( Base ` ( Scalar ` U ) ) ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) |
103 |
102
|
reximi |
|- ( E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) -> E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) |
104 |
|
rexcom |
|- ( E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) ( f e. R <-> ( r ( .s ` D ) h ) e. R ) <-> E. r e. ( Base ` ( Scalar ` U ) ) E. h e. R ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) |
105 |
|
df-rex |
|- ( E. h e. R ( f e. R <-> ( r ( .s ` D ) h ) e. R ) <-> E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) |
106 |
105
|
rexbii |
|- ( E. r e. ( Base ` ( Scalar ` U ) ) E. h e. R ( f e. R <-> ( r ( .s ` D ) h ) e. R ) <-> E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) |
107 |
104 106
|
bitri |
|- ( E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) ( f e. R <-> ( r ( .s ` D ) h ) e. R ) <-> E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) |
108 |
103 107
|
sylib |
|- ( E. h e. R E. r e. ( Base ` ( Scalar ` U ) ) f = ( r ( .s ` D ) h ) -> E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) |
109 |
100 108
|
syl |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) |
110 |
33
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> U e. LMod ) |
111 |
12
|
3ad2ant1 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> R e. T ) |
112 |
111
|
adantr |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> R e. T ) |
113 |
112
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> R e. T ) |
114 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> r e. ( Base ` ( Scalar ` U ) ) ) |
115 |
|
simprl |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> h e. R ) |
116 |
52 53 8 54 9 110 113 114 115
|
ldualssvscl |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> ( r ( .s ` D ) h ) e. R ) |
117 |
|
biimpr |
|- ( ( f e. R <-> ( r ( .s ` D ) h ) e. R ) -> ( ( r ( .s ` D ) h ) e. R -> f e. R ) ) |
118 |
117
|
ad2antll |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> ( ( r ( .s ` D ) h ) e. R -> f e. R ) ) |
119 |
116 118
|
mpd |
|- ( ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) /\ ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) ) -> f e. R ) |
120 |
119
|
ex |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) -> ( ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) -> f e. R ) ) |
121 |
120
|
exlimdv |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ r e. ( Base ` ( Scalar ` U ) ) ) -> ( E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) -> f e. R ) ) |
122 |
121
|
rexlimdva |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> ( E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) -> f e. R ) ) |
123 |
122
|
3ad2ant1 |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> ( E. r e. ( Base ` ( Scalar ` U ) ) E. h ( h e. R /\ ( f e. R <-> ( r ( .s ` D ) h ) e. R ) ) -> f e. R ) ) |
124 |
109 123
|
mpd |
|- ( ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) /\ x e. ( V \ { .0. } ) /\ ( O ` ( L ` f ) ) = ( N ` { x } ) ) -> f e. R ) |
125 |
124
|
rexlimdv3a |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> ( E. x e. ( V \ { .0. } ) ( O ` ( L ` f ) ) = ( N ` { x } ) -> f e. R ) ) |
126 |
27 125
|
mpd |
|- ( ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) /\ f =/= Y ) -> f e. R ) |
127 |
8 31
|
lduallmod |
|- ( ph -> D e. LMod ) |
128 |
127
|
3ad2ant1 |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> D e. LMod ) |
129 |
19 9
|
lss0cl |
|- ( ( D e. LMod /\ R e. T ) -> Y e. R ) |
130 |
128 111 129
|
syl2anc |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> Y e. R ) |
131 |
20 126 130
|
pm2.61ne |
|- ( ( ph /\ f e. C /\ ( O ` ( L ` f ) ) C_ Q ) -> f e. R ) |
132 |
131
|
rabssdv |
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } C_ R ) |