Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrval.h |
|
2 |
|
mapdrval.o |
|
3 |
|
mapdrval.m |
|
4 |
|
mapdrval.u |
|
5 |
|
mapdrval.s |
|
6 |
|
mapdrval.f |
|
7 |
|
mapdrval.l |
|
8 |
|
mapdrval.d |
|
9 |
|
mapdrval.t |
|
10 |
|
mapdrval.c |
|
11 |
|
mapdrval.k |
|
12 |
|
mapdrval.r |
|
13 |
|
mapdrval.e |
|
14 |
|
mapdrval.q |
|
15 |
|
mapdrval.v |
|
16 |
|
mapdrvallem2.a |
|
17 |
|
mapdrvallem2.n |
|
18 |
|
mapdrvallem2.z |
|
19 |
|
mapdrvallem2.y |
|
20 |
|
eleq1 |
|
21 |
11
|
3ad2ant1 |
|
22 |
21
|
adantr |
|
23 |
|
simpl2 |
|
24 |
|
simpr |
|
25 |
|
eldifsn |
|
26 |
23 24 25
|
sylanbrc |
|
27 |
1 2 4 15 17 18 6 7 8 19 10 22 26
|
lcfl8b |
|
28 |
|
simp1l3 |
|
29 |
|
eqimss2 |
|
30 |
29
|
3ad2ant3 |
|
31 |
1 4 11
|
dvhlmod |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
adantr |
|
34 |
33
|
3ad2ant1 |
|
35 |
22
|
3ad2ant1 |
|
36 |
10
|
lcfl1lem |
|
37 |
36
|
simplbi |
|
38 |
37
|
3ad2ant2 |
|
39 |
38
|
adantr |
|
40 |
39
|
3ad2ant1 |
|
41 |
15 6 7 34 40
|
lkrssv |
|
42 |
1 4 15 5 2
|
dochlss |
|
43 |
35 41 42
|
syl2anc |
|
44 |
|
eldifi |
|
45 |
44
|
3ad2ant2 |
|
46 |
15 5 17 34 43 45
|
lspsnel5 |
|
47 |
30 46
|
mpbird |
|
48 |
28 47
|
sseldd |
|
49 |
48 14
|
eleqtrdi |
|
50 |
|
eliun |
|
51 |
49 50
|
sylib |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
1 4 11
|
dvhlvec |
|
56 |
55
|
3ad2ant1 |
|
57 |
56
|
adantr |
|
58 |
57
|
3ad2ant1 |
|
59 |
58
|
ad2antrr |
|
60 |
|
simpr |
|
61 |
|
simp1l1 |
|
62 |
61
|
adantr |
|
63 |
62 13
|
syl |
|
64 |
63
|
sseld |
|
65 |
10
|
lcfl1lem |
|
66 |
65
|
simplbi |
|
67 |
64 66
|
syl6 |
|
68 |
60 67
|
mpd |
|
69 |
68
|
adantr |
|
70 |
40
|
ad2antrr |
|
71 |
|
simpll3 |
|
72 |
34
|
ad2antrr |
|
73 |
35
|
ad2antrr |
|
74 |
15 6 7 72 69
|
lkrssv |
|
75 |
1 4 15 5 2
|
dochlss |
|
76 |
73 74 75
|
syl2anc |
|
77 |
|
simpr |
|
78 |
5 17 72 76 77
|
lspsnel5a |
|
79 |
|
simpll2 |
|
80 |
15 17 18 16 72 79
|
lsatlspsn |
|
81 |
1 2 4 18 16 6 7 73 69
|
dochsat0 |
|
82 |
18 16 59 80 81
|
lsatcmp2 |
|
83 |
78 82
|
mpbid |
|
84 |
71 83
|
eqtr2d |
|
85 |
|
eqid |
|
86 |
61 13
|
syl |
|
87 |
86
|
sselda |
|
88 |
87
|
adantr |
|
89 |
1 85 2 4 6 7 10 73 69
|
lcfl5 |
|
90 |
88 89
|
mpbid |
|
91 |
|
simp1l2 |
|
92 |
91
|
ad2antrr |
|
93 |
1 85 2 4 6 7 10 73 70
|
lcfl5 |
|
94 |
92 93
|
mpbid |
|
95 |
1 85 2 73 90 94
|
doch11 |
|
96 |
84 95
|
mpbid |
|
97 |
52 53 6 7 8 54 59 69 70 96
|
eqlkr4 |
|
98 |
97
|
ex |
|
99 |
98
|
reximdva |
|
100 |
51 99
|
mpd |
|
101 |
|
eleq1 |
|
102 |
101
|
reximi |
|
103 |
102
|
reximi |
|
104 |
|
rexcom |
|
105 |
|
df-rex |
|
106 |
105
|
rexbii |
|
107 |
104 106
|
bitri |
|
108 |
103 107
|
sylib |
|
109 |
100 108
|
syl |
|
110 |
33
|
ad2antrr |
|
111 |
12
|
3ad2ant1 |
|
112 |
111
|
adantr |
|
113 |
112
|
ad2antrr |
|
114 |
|
simplr |
|
115 |
|
simprl |
|
116 |
52 53 8 54 9 110 113 114 115
|
ldualssvscl |
|
117 |
|
biimpr |
|
118 |
117
|
ad2antll |
|
119 |
116 118
|
mpd |
|
120 |
119
|
ex |
|
121 |
120
|
exlimdv |
|
122 |
121
|
rexlimdva |
|
123 |
122
|
3ad2ant1 |
|
124 |
109 123
|
mpd |
|
125 |
124
|
rexlimdv3a |
|
126 |
27 125
|
mpd |
|
127 |
8 31
|
lduallmod |
|
128 |
127
|
3ad2ant1 |
|
129 |
19 9
|
lss0cl |
|
130 |
128 111 129
|
syl2anc |
|
131 |
20 126 130
|
pm2.61ne |
|
132 |
131
|
rabssdv |
|