| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdrval.h |
|
| 2 |
|
mapdrval.o |
|
| 3 |
|
mapdrval.m |
|
| 4 |
|
mapdrval.u |
|
| 5 |
|
mapdrval.s |
|
| 6 |
|
mapdrval.f |
|
| 7 |
|
mapdrval.l |
|
| 8 |
|
mapdrval.d |
|
| 9 |
|
mapdrval.t |
|
| 10 |
|
mapdrval.c |
|
| 11 |
|
mapdrval.k |
|
| 12 |
|
mapdrval.r |
|
| 13 |
|
mapdrval.e |
|
| 14 |
|
mapdrval.q |
|
| 15 |
|
mapdrval.v |
|
| 16 |
|
mapdrvallem2.a |
|
| 17 |
|
mapdrvallem2.n |
|
| 18 |
|
mapdrvallem2.z |
|
| 19 |
|
mapdrvallem2.y |
|
| 20 |
|
eleq1 |
|
| 21 |
11
|
3ad2ant1 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpl2 |
|
| 24 |
|
simpr |
|
| 25 |
|
eldifsn |
|
| 26 |
23 24 25
|
sylanbrc |
|
| 27 |
1 2 4 15 17 18 6 7 8 19 10 22 26
|
lcfl8b |
|
| 28 |
|
simp1l3 |
|
| 29 |
|
eqimss2 |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
1 4 11
|
dvhlmod |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
22
|
3ad2ant1 |
|
| 36 |
10
|
lcfl1lem |
|
| 37 |
36
|
simplbi |
|
| 38 |
37
|
3ad2ant2 |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
15 6 7 34 40
|
lkrssv |
|
| 42 |
1 4 15 5 2
|
dochlss |
|
| 43 |
35 41 42
|
syl2anc |
|
| 44 |
|
eldifi |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
15 5 17 34 43 45
|
ellspsn5b |
|
| 47 |
30 46
|
mpbird |
|
| 48 |
28 47
|
sseldd |
|
| 49 |
48 14
|
eleqtrdi |
|
| 50 |
|
eliun |
|
| 51 |
49 50
|
sylib |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
1 4 11
|
dvhlvec |
|
| 56 |
55
|
3ad2ant1 |
|
| 57 |
56
|
adantr |
|
| 58 |
57
|
3ad2ant1 |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
simpr |
|
| 61 |
|
simp1l1 |
|
| 62 |
61
|
adantr |
|
| 63 |
62 13
|
syl |
|
| 64 |
63
|
sseld |
|
| 65 |
10
|
lcfl1lem |
|
| 66 |
65
|
simplbi |
|
| 67 |
64 66
|
syl6 |
|
| 68 |
60 67
|
mpd |
|
| 69 |
68
|
adantr |
|
| 70 |
40
|
ad2antrr |
|
| 71 |
|
simpll3 |
|
| 72 |
34
|
ad2antrr |
|
| 73 |
35
|
ad2antrr |
|
| 74 |
15 6 7 72 69
|
lkrssv |
|
| 75 |
1 4 15 5 2
|
dochlss |
|
| 76 |
73 74 75
|
syl2anc |
|
| 77 |
|
simpr |
|
| 78 |
5 17 72 76 77
|
ellspsn5 |
|
| 79 |
|
simpll2 |
|
| 80 |
15 17 18 16 72 79
|
lsatlspsn |
|
| 81 |
1 2 4 18 16 6 7 73 69
|
dochsat0 |
|
| 82 |
18 16 59 80 81
|
lsatcmp2 |
|
| 83 |
78 82
|
mpbid |
|
| 84 |
71 83
|
eqtr2d |
|
| 85 |
|
eqid |
|
| 86 |
61 13
|
syl |
|
| 87 |
86
|
sselda |
|
| 88 |
87
|
adantr |
|
| 89 |
1 85 2 4 6 7 10 73 69
|
lcfl5 |
|
| 90 |
88 89
|
mpbid |
|
| 91 |
|
simp1l2 |
|
| 92 |
91
|
ad2antrr |
|
| 93 |
1 85 2 4 6 7 10 73 70
|
lcfl5 |
|
| 94 |
92 93
|
mpbid |
|
| 95 |
1 85 2 73 90 94
|
doch11 |
|
| 96 |
84 95
|
mpbid |
|
| 97 |
52 53 6 7 8 54 59 69 70 96
|
eqlkr4 |
|
| 98 |
97
|
ex |
|
| 99 |
98
|
reximdva |
|
| 100 |
51 99
|
mpd |
|
| 101 |
|
eleq1 |
|
| 102 |
101
|
reximi |
|
| 103 |
102
|
reximi |
|
| 104 |
|
rexcom |
|
| 105 |
|
df-rex |
|
| 106 |
105
|
rexbii |
|
| 107 |
104 106
|
bitri |
|
| 108 |
103 107
|
sylib |
|
| 109 |
100 108
|
syl |
|
| 110 |
33
|
ad2antrr |
|
| 111 |
12
|
3ad2ant1 |
|
| 112 |
111
|
adantr |
|
| 113 |
112
|
ad2antrr |
|
| 114 |
|
simplr |
|
| 115 |
|
simprl |
|
| 116 |
52 53 8 54 9 110 113 114 115
|
ldualssvscl |
|
| 117 |
|
biimpr |
|
| 118 |
117
|
ad2antll |
|
| 119 |
116 118
|
mpd |
|
| 120 |
119
|
ex |
|
| 121 |
120
|
exlimdv |
|
| 122 |
121
|
rexlimdva |
|
| 123 |
122
|
3ad2ant1 |
|
| 124 |
109 123
|
mpd |
|
| 125 |
124
|
rexlimdv3a |
|
| 126 |
27 125
|
mpd |
|
| 127 |
8 31
|
lduallmod |
|
| 128 |
127
|
3ad2ant1 |
|
| 129 |
19 9
|
lss0cl |
|
| 130 |
128 111 129
|
syl2anc |
|
| 131 |
20 126 130
|
pm2.61ne |
|
| 132 |
131
|
rabssdv |
|