Metamath Proof Explorer


Definition df-mapd

Description: Extend class notation with a one-to-one onto ( mapd1o ), order-preserving ( mapdord ) map, called a projectivity (definition of projectivity in Baer p. 40), from subspaces of vector space H to those subspaces of the dual space having functionals with closed kernels. (Contributed by NM, 25-Jan-2015)

Ref Expression
Assertion df-mapd mapd=kVwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpd classmapd
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vs setvars
8 clss classLSubSp
9 cdvh classDVecH
10 5 9 cfv classDVecHk
11 3 cv setvarw
12 11 10 cfv classDVecHkw
13 12 8 cfv classLSubSpDVecHkw
14 vf setvarf
15 clfn classLFnl
16 12 15 cfv classLFnlDVecHkw
17 coch classocH
18 5 17 cfv classocHk
19 11 18 cfv classocHkw
20 clk classLKer
21 12 20 cfv classLKerDVecHkw
22 14 cv setvarf
23 22 21 cfv classLKerDVecHkwf
24 23 19 cfv classocHkwLKerDVecHkwf
25 24 19 cfv classocHkwocHkwLKerDVecHkwf
26 25 23 wceq wffocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
27 7 cv setvars
28 24 27 wss wffocHkwLKerDVecHkwfs
29 26 28 wa wffocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
30 29 14 16 crab classfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
31 7 13 30 cmpt classsLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
32 3 6 31 cmpt classwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
33 1 2 32 cmpt classkVwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
34 0 33 wceq wffmapd=kVwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs