| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdrval.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | mapdrval.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 4 |  | mapdrval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | mapdrval.s |  |-  S = ( LSubSp ` U ) | 
						
							| 6 |  | mapdrval.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | mapdrval.l |  |-  L = ( LKer ` U ) | 
						
							| 8 |  | mapdrval.d |  |-  D = ( LDual ` U ) | 
						
							| 9 |  | mapdrval.t |  |-  T = ( LSubSp ` D ) | 
						
							| 10 |  | mapdrval.c |  |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 11 |  | mapdrval.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | mapdrval.r |  |-  ( ph -> R e. T ) | 
						
							| 13 |  | mapdrval.e |  |-  ( ph -> R C_ C ) | 
						
							| 14 |  | mapdrval.q |  |-  Q = U_ h e. R ( O ` ( L ` h ) ) | 
						
							| 15 | 1 2 4 5 6 7 8 9 10 14 11 12 13 | lcfr |  |-  ( ph -> Q e. S ) | 
						
							| 16 | 1 4 5 6 7 2 3 11 15 10 | mapdvalc |  |-  ( ph -> ( M ` Q ) = { f e. C | ( O ` ( L ` f ) ) C_ Q } ) | 
						
							| 17 |  | 2fveq3 |  |-  ( h = i -> ( O ` ( L ` h ) ) = ( O ` ( L ` i ) ) ) | 
						
							| 18 | 17 | cbviunv |  |-  U_ h e. R ( O ` ( L ` h ) ) = U_ i e. R ( O ` ( L ` i ) ) | 
						
							| 19 | 14 18 | eqtri |  |-  Q = U_ i e. R ( O ` ( L ` i ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 21 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 22 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 24 |  | eqid |  |-  ( 0g ` D ) = ( 0g ` D ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 | mapdrvallem3 |  |-  ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R ) | 
						
							| 26 | 16 25 | eqtrd |  |-  ( ph -> ( M ` Q ) = R ) |