| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdrval.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdrval.o |
|- O = ( ( ocH ` K ) ` W ) |
| 3 |
|
mapdrval.m |
|- M = ( ( mapd ` K ) ` W ) |
| 4 |
|
mapdrval.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
mapdrval.s |
|- S = ( LSubSp ` U ) |
| 6 |
|
mapdrval.f |
|- F = ( LFnl ` U ) |
| 7 |
|
mapdrval.l |
|- L = ( LKer ` U ) |
| 8 |
|
mapdrval.d |
|- D = ( LDual ` U ) |
| 9 |
|
mapdrval.t |
|- T = ( LSubSp ` D ) |
| 10 |
|
mapdrval.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
| 11 |
|
mapdrval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
mapdrval.r |
|- ( ph -> R e. T ) |
| 13 |
|
mapdrval.e |
|- ( ph -> R C_ C ) |
| 14 |
|
mapdrval.q |
|- Q = U_ h e. R ( O ` ( L ` h ) ) |
| 15 |
1 2 4 5 6 7 8 9 10 14 11 12 13
|
lcfr |
|- ( ph -> Q e. S ) |
| 16 |
1 4 5 6 7 2 3 11 15 10
|
mapdvalc |
|- ( ph -> ( M ` Q ) = { f e. C | ( O ` ( L ` f ) ) C_ Q } ) |
| 17 |
|
2fveq3 |
|- ( h = i -> ( O ` ( L ` h ) ) = ( O ` ( L ` i ) ) ) |
| 18 |
17
|
cbviunv |
|- U_ h e. R ( O ` ( L ` h ) ) = U_ i e. R ( O ` ( L ` i ) ) |
| 19 |
14 18
|
eqtri |
|- Q = U_ i e. R ( O ` ( L ` i ) ) |
| 20 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 21 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 22 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 23 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 24 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24
|
mapdrvallem3 |
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R ) |
| 26 |
16 25
|
eqtrd |
|- ( ph -> ( M ` Q ) = R ) |