Step |
Hyp |
Ref |
Expression |
1 |
|
lcfr.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfr.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfr.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfr.s |
|- S = ( LSubSp ` U ) |
5 |
|
lcfr.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfr.l |
|- L = ( LKer ` U ) |
7 |
|
lcfr.d |
|- D = ( LDual ` U ) |
8 |
|
lcfr.t |
|- T = ( LSubSp ` D ) |
9 |
|
lcfr.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfr.q |
|- Q = U_ g e. R ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfr.r |
|- ( ph -> R e. T ) |
13 |
|
lcfr.rs |
|- ( ph -> R C_ C ) |
14 |
|
2fveq3 |
|- ( g = h -> ( ._|_ ` ( L ` g ) ) = ( ._|_ ` ( L ` h ) ) ) |
15 |
14
|
cbviunv |
|- U_ g e. R ( ._|_ ` ( L ` g ) ) = U_ h e. R ( ._|_ ` ( L ` h ) ) |
16 |
10 15
|
eqtri |
|- Q = U_ h e. R ( ._|_ ` ( L ` h ) ) |
17 |
11
|
adantr |
|- ( ( ph /\ h e. R ) -> ( K e. HL /\ W e. H ) ) |
18 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
19 |
1 3 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
20 |
19
|
adantr |
|- ( ( ph /\ h e. R ) -> U e. LMod ) |
21 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
22 |
21 8
|
lssss |
|- ( R e. T -> R C_ ( Base ` D ) ) |
23 |
12 22
|
syl |
|- ( ph -> R C_ ( Base ` D ) ) |
24 |
5 7 21 19
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
25 |
23 24
|
sseqtrd |
|- ( ph -> R C_ F ) |
26 |
25
|
sselda |
|- ( ( ph /\ h e. R ) -> h e. F ) |
27 |
18 5 6 20 26
|
lkrssv |
|- ( ( ph /\ h e. R ) -> ( L ` h ) C_ ( Base ` U ) ) |
28 |
1 3 18 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` h ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) ) |
29 |
17 27 28
|
syl2anc |
|- ( ( ph /\ h e. R ) -> ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. h e. R ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) ) |
31 |
|
iunss |
|- ( U_ h e. R ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) <-> A. h e. R ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) ) |
32 |
30 31
|
sylibr |
|- ( ph -> U_ h e. R ( ._|_ ` ( L ` h ) ) C_ ( Base ` U ) ) |
33 |
16 32
|
eqsstrid |
|- ( ph -> Q C_ ( Base ` U ) ) |
34 |
16
|
a1i |
|- ( ph -> Q = U_ h e. R ( ._|_ ` ( L ` h ) ) ) |
35 |
7 19
|
lduallmod |
|- ( ph -> D e. LMod ) |
36 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
37 |
36 8
|
lss0cl |
|- ( ( D e. LMod /\ R e. T ) -> ( 0g ` D ) e. R ) |
38 |
35 12 37
|
syl2anc |
|- ( ph -> ( 0g ` D ) e. R ) |
39 |
5 7 36 19
|
ldual0vcl |
|- ( ph -> ( 0g ` D ) e. F ) |
40 |
18 5 6 19 39
|
lkrssv |
|- ( ph -> ( L ` ( 0g ` D ) ) C_ ( Base ` U ) ) |
41 |
1 3 18 4 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` ( 0g ` D ) ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` ( 0g ` D ) ) ) e. S ) |
42 |
11 40 41
|
syl2anc |
|- ( ph -> ( ._|_ ` ( L ` ( 0g ` D ) ) ) e. S ) |
43 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
44 |
43 4
|
lss0cl |
|- ( ( U e. LMod /\ ( ._|_ ` ( L ` ( 0g ` D ) ) ) e. S ) -> ( 0g ` U ) e. ( ._|_ ` ( L ` ( 0g ` D ) ) ) ) |
45 |
19 42 44
|
syl2anc |
|- ( ph -> ( 0g ` U ) e. ( ._|_ ` ( L ` ( 0g ` D ) ) ) ) |
46 |
|
2fveq3 |
|- ( h = ( 0g ` D ) -> ( ._|_ ` ( L ` h ) ) = ( ._|_ ` ( L ` ( 0g ` D ) ) ) ) |
47 |
46
|
eleq2d |
|- ( h = ( 0g ` D ) -> ( ( 0g ` U ) e. ( ._|_ ` ( L ` h ) ) <-> ( 0g ` U ) e. ( ._|_ ` ( L ` ( 0g ` D ) ) ) ) ) |
48 |
47
|
rspcev |
|- ( ( ( 0g ` D ) e. R /\ ( 0g ` U ) e. ( ._|_ ` ( L ` ( 0g ` D ) ) ) ) -> E. h e. R ( 0g ` U ) e. ( ._|_ ` ( L ` h ) ) ) |
49 |
38 45 48
|
syl2anc |
|- ( ph -> E. h e. R ( 0g ` U ) e. ( ._|_ ` ( L ` h ) ) ) |
50 |
|
eliun |
|- ( ( 0g ` U ) e. U_ h e. R ( ._|_ ` ( L ` h ) ) <-> E. h e. R ( 0g ` U ) e. ( ._|_ ` ( L ` h ) ) ) |
51 |
49 50
|
sylibr |
|- ( ph -> ( 0g ` U ) e. U_ h e. R ( ._|_ ` ( L ` h ) ) ) |
52 |
51
|
ne0d |
|- ( ph -> U_ h e. R ( ._|_ ` ( L ` h ) ) =/= (/) ) |
53 |
34 52
|
eqnetrd |
|- ( ph -> Q =/= (/) ) |
54 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
55 |
|
rabeq |
|- ( F = ( LFnl ` U ) -> { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
56 |
5 55
|
ax-mp |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
57 |
9 56
|
eqtri |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
58 |
11
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> ( K e. HL /\ W e. H ) ) |
59 |
12
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> R e. T ) |
60 |
13
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> R C_ C ) |
61 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> a e. Q ) |
62 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
63 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
64 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
65 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> x e. ( Base ` ( Scalar ` U ) ) ) |
66 |
1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65
|
lcfrlem5 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> ( x ( .s ` U ) a ) e. Q ) |
67 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> b e. Q ) |
68 |
1 2 3 54 5 6 7 8 57 16 58 59 60 66 67
|
lcfrlem42 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` U ) ) /\ a e. Q /\ b e. Q ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. Q ) |
69 |
68
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` ( Scalar ` U ) ) A. a e. Q A. b e. Q ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. Q ) |
70 |
62 63 18 54 64 4
|
islss |
|- ( Q e. S <-> ( Q C_ ( Base ` U ) /\ Q =/= (/) /\ A. x e. ( Base ` ( Scalar ` U ) ) A. a e. Q A. b e. Q ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. Q ) ) |
71 |
33 53 69 70
|
syl3anbrc |
|- ( ph -> Q e. S ) |