Metamath Proof Explorer


Theorem lcfr

Description: Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses lcfr.h H = LHyp K
lcfr.o ˙ = ocH K W
lcfr.u U = DVecH K W
lcfr.s S = LSubSp U
lcfr.f F = LFnl U
lcfr.l L = LKer U
lcfr.d D = LDual U
lcfr.t T = LSubSp D
lcfr.c C = f F | ˙ ˙ L f = L f
lcfr.q Q = g R ˙ L g
lcfr.k φ K HL W H
lcfr.r φ R T
lcfr.rs φ R C
Assertion lcfr φ Q S

Proof

Step Hyp Ref Expression
1 lcfr.h H = LHyp K
2 lcfr.o ˙ = ocH K W
3 lcfr.u U = DVecH K W
4 lcfr.s S = LSubSp U
5 lcfr.f F = LFnl U
6 lcfr.l L = LKer U
7 lcfr.d D = LDual U
8 lcfr.t T = LSubSp D
9 lcfr.c C = f F | ˙ ˙ L f = L f
10 lcfr.q Q = g R ˙ L g
11 lcfr.k φ K HL W H
12 lcfr.r φ R T
13 lcfr.rs φ R C
14 2fveq3 g = h ˙ L g = ˙ L h
15 14 cbviunv g R ˙ L g = h R ˙ L h
16 10 15 eqtri Q = h R ˙ L h
17 11 adantr φ h R K HL W H
18 eqid Base U = Base U
19 1 3 11 dvhlmod φ U LMod
20 19 adantr φ h R U LMod
21 eqid Base D = Base D
22 21 8 lssss R T R Base D
23 12 22 syl φ R Base D
24 5 7 21 19 ldualvbase φ Base D = F
25 23 24 sseqtrd φ R F
26 25 sselda φ h R h F
27 18 5 6 20 26 lkrssv φ h R L h Base U
28 1 3 18 2 dochssv K HL W H L h Base U ˙ L h Base U
29 17 27 28 syl2anc φ h R ˙ L h Base U
30 29 ralrimiva φ h R ˙ L h Base U
31 iunss h R ˙ L h Base U h R ˙ L h Base U
32 30 31 sylibr φ h R ˙ L h Base U
33 16 32 eqsstrid φ Q Base U
34 16 a1i φ Q = h R ˙ L h
35 7 19 lduallmod φ D LMod
36 eqid 0 D = 0 D
37 36 8 lss0cl D LMod R T 0 D R
38 35 12 37 syl2anc φ 0 D R
39 5 7 36 19 ldual0vcl φ 0 D F
40 18 5 6 19 39 lkrssv φ L 0 D Base U
41 1 3 18 4 2 dochlss K HL W H L 0 D Base U ˙ L 0 D S
42 11 40 41 syl2anc φ ˙ L 0 D S
43 eqid 0 U = 0 U
44 43 4 lss0cl U LMod ˙ L 0 D S 0 U ˙ L 0 D
45 19 42 44 syl2anc φ 0 U ˙ L 0 D
46 2fveq3 h = 0 D ˙ L h = ˙ L 0 D
47 46 eleq2d h = 0 D 0 U ˙ L h 0 U ˙ L 0 D
48 47 rspcev 0 D R 0 U ˙ L 0 D h R 0 U ˙ L h
49 38 45 48 syl2anc φ h R 0 U ˙ L h
50 eliun 0 U h R ˙ L h h R 0 U ˙ L h
51 49 50 sylibr φ 0 U h R ˙ L h
52 51 ne0d φ h R ˙ L h
53 34 52 eqnetrd φ Q
54 eqid + U = + U
55 rabeq F = LFnl U f F | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
56 5 55 ax-mp f F | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
57 9 56 eqtri C = f LFnl U | ˙ ˙ L f = L f
58 11 adantr φ x Base Scalar U a Q b Q K HL W H
59 12 adantr φ x Base Scalar U a Q b Q R T
60 13 adantr φ x Base Scalar U a Q b Q R C
61 simpr2 φ x Base Scalar U a Q b Q a Q
62 eqid Scalar U = Scalar U
63 eqid Base Scalar U = Base Scalar U
64 eqid U = U
65 simpr1 φ x Base Scalar U a Q b Q x Base Scalar U
66 1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65 lcfrlem5 φ x Base Scalar U a Q b Q x U a Q
67 simpr3 φ x Base Scalar U a Q b Q b Q
68 1 2 3 54 5 6 7 8 57 16 58 59 60 66 67 lcfrlem42 φ x Base Scalar U a Q b Q x U a + U b Q
69 68 ralrimivvva φ x Base Scalar U a Q b Q x U a + U b Q
70 62 63 18 54 64 4 islss Q S Q Base U Q x Base Scalar U a Q b Q x U a + U b Q
71 33 53 69 70 syl3anbrc φ Q S