Step |
Hyp |
Ref |
Expression |
1 |
|
lcfr.h |
|
2 |
|
lcfr.o |
|
3 |
|
lcfr.u |
|
4 |
|
lcfr.s |
|
5 |
|
lcfr.f |
|
6 |
|
lcfr.l |
|
7 |
|
lcfr.d |
|
8 |
|
lcfr.t |
|
9 |
|
lcfr.c |
|
10 |
|
lcfr.q |
|
11 |
|
lcfr.k |
|
12 |
|
lcfr.r |
|
13 |
|
lcfr.rs |
|
14 |
|
2fveq3 |
|
15 |
14
|
cbviunv |
|
16 |
10 15
|
eqtri |
|
17 |
11
|
adantr |
|
18 |
|
eqid |
|
19 |
1 3 11
|
dvhlmod |
|
20 |
19
|
adantr |
|
21 |
|
eqid |
|
22 |
21 8
|
lssss |
|
23 |
12 22
|
syl |
|
24 |
5 7 21 19
|
ldualvbase |
|
25 |
23 24
|
sseqtrd |
|
26 |
25
|
sselda |
|
27 |
18 5 6 20 26
|
lkrssv |
|
28 |
1 3 18 2
|
dochssv |
|
29 |
17 27 28
|
syl2anc |
|
30 |
29
|
ralrimiva |
|
31 |
|
iunss |
|
32 |
30 31
|
sylibr |
|
33 |
16 32
|
eqsstrid |
|
34 |
16
|
a1i |
|
35 |
7 19
|
lduallmod |
|
36 |
|
eqid |
|
37 |
36 8
|
lss0cl |
|
38 |
35 12 37
|
syl2anc |
|
39 |
5 7 36 19
|
ldual0vcl |
|
40 |
18 5 6 19 39
|
lkrssv |
|
41 |
1 3 18 4 2
|
dochlss |
|
42 |
11 40 41
|
syl2anc |
|
43 |
|
eqid |
|
44 |
43 4
|
lss0cl |
|
45 |
19 42 44
|
syl2anc |
|
46 |
|
2fveq3 |
|
47 |
46
|
eleq2d |
|
48 |
47
|
rspcev |
|
49 |
38 45 48
|
syl2anc |
|
50 |
|
eliun |
|
51 |
49 50
|
sylibr |
|
52 |
51
|
ne0d |
|
53 |
34 52
|
eqnetrd |
|
54 |
|
eqid |
|
55 |
|
rabeq |
|
56 |
5 55
|
ax-mp |
|
57 |
9 56
|
eqtri |
|
58 |
11
|
adantr |
|
59 |
12
|
adantr |
|
60 |
13
|
adantr |
|
61 |
|
simpr2 |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
|
simpr1 |
|
66 |
1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65
|
lcfrlem5 |
|
67 |
|
simpr3 |
|
68 |
1 2 3 54 5 6 7 8 57 16 58 59 60 66 67
|
lcfrlem42 |
|
69 |
68
|
ralrimivvva |
|
70 |
62 63 18 54 64 4
|
islss |
|
71 |
33 53 69 70
|
syl3anbrc |
|