Metamath Proof Explorer


Theorem lcfr

Description: Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015)

Ref Expression
Hypotheses lcfr.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfr.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfr.s 𝑆 = ( LSubSp ‘ 𝑈 )
lcfr.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfr.l 𝐿 = ( LKer ‘ 𝑈 )
lcfr.d 𝐷 = ( LDual ‘ 𝑈 )
lcfr.t 𝑇 = ( LSubSp ‘ 𝐷 )
lcfr.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfr.q 𝑄 = 𝑔𝑅 ( ‘ ( 𝐿𝑔 ) )
lcfr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfr.r ( 𝜑𝑅𝑇 )
lcfr.rs ( 𝜑𝑅𝐶 )
Assertion lcfr ( 𝜑𝑄𝑆 )

Proof

Step Hyp Ref Expression
1 lcfr.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfr.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfr.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 lcfr.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfr.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfr.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfr.t 𝑇 = ( LSubSp ‘ 𝐷 )
9 lcfr.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lcfr.q 𝑄 = 𝑔𝑅 ( ‘ ( 𝐿𝑔 ) )
11 lcfr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcfr.r ( 𝜑𝑅𝑇 )
13 lcfr.rs ( 𝜑𝑅𝐶 )
14 2fveq3 ( 𝑔 = → ( ‘ ( 𝐿𝑔 ) ) = ( ‘ ( 𝐿 ) ) )
15 14 cbviunv 𝑔𝑅 ( ‘ ( 𝐿𝑔 ) ) = 𝑅 ( ‘ ( 𝐿 ) )
16 10 15 eqtri 𝑄 = 𝑅 ( ‘ ( 𝐿 ) )
17 11 adantr ( ( 𝜑𝑅 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
18 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
19 1 3 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
20 19 adantr ( ( 𝜑𝑅 ) → 𝑈 ∈ LMod )
21 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
22 21 8 lssss ( 𝑅𝑇𝑅 ⊆ ( Base ‘ 𝐷 ) )
23 12 22 syl ( 𝜑𝑅 ⊆ ( Base ‘ 𝐷 ) )
24 5 7 21 19 ldualvbase ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 )
25 23 24 sseqtrd ( 𝜑𝑅𝐹 )
26 25 sselda ( ( 𝜑𝑅 ) → 𝐹 )
27 18 5 6 20 26 lkrssv ( ( 𝜑𝑅 ) → ( 𝐿 ) ⊆ ( Base ‘ 𝑈 ) )
28 1 3 18 2 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) )
29 17 27 28 syl2anc ( ( 𝜑𝑅 ) → ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) )
30 29 ralrimiva ( 𝜑 → ∀ 𝑅 ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) )
31 iunss ( 𝑅 ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) ↔ ∀ 𝑅 ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) )
32 30 31 sylibr ( 𝜑 𝑅 ( ‘ ( 𝐿 ) ) ⊆ ( Base ‘ 𝑈 ) )
33 16 32 eqsstrid ( 𝜑𝑄 ⊆ ( Base ‘ 𝑈 ) )
34 16 a1i ( 𝜑𝑄 = 𝑅 ( ‘ ( 𝐿 ) ) )
35 7 19 lduallmod ( 𝜑𝐷 ∈ LMod )
36 eqid ( 0g𝐷 ) = ( 0g𝐷 )
37 36 8 lss0cl ( ( 𝐷 ∈ LMod ∧ 𝑅𝑇 ) → ( 0g𝐷 ) ∈ 𝑅 )
38 35 12 37 syl2anc ( 𝜑 → ( 0g𝐷 ) ∈ 𝑅 )
39 5 7 36 19 ldual0vcl ( 𝜑 → ( 0g𝐷 ) ∈ 𝐹 )
40 18 5 6 19 39 lkrssv ( 𝜑 → ( 𝐿 ‘ ( 0g𝐷 ) ) ⊆ ( Base ‘ 𝑈 ) )
41 1 3 18 4 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿 ‘ ( 0g𝐷 ) ) ⊆ ( Base ‘ 𝑈 ) ) → ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) ∈ 𝑆 )
42 11 40 41 syl2anc ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) ∈ 𝑆 )
43 eqid ( 0g𝑈 ) = ( 0g𝑈 )
44 43 4 lss0cl ( ( 𝑈 ∈ LMod ∧ ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) ∈ 𝑆 ) → ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) )
45 19 42 44 syl2anc ( 𝜑 → ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) )
46 2fveq3 ( = ( 0g𝐷 ) → ( ‘ ( 𝐿 ) ) = ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) )
47 46 eleq2d ( = ( 0g𝐷 ) → ( ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ) ) ↔ ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) ) )
48 47 rspcev ( ( ( 0g𝐷 ) ∈ 𝑅 ∧ ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ‘ ( 0g𝐷 ) ) ) ) → ∃ 𝑅 ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ) ) )
49 38 45 48 syl2anc ( 𝜑 → ∃ 𝑅 ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ) ) )
50 eliun ( ( 0g𝑈 ) ∈ 𝑅 ( ‘ ( 𝐿 ) ) ↔ ∃ 𝑅 ( 0g𝑈 ) ∈ ( ‘ ( 𝐿 ) ) )
51 49 50 sylibr ( 𝜑 → ( 0g𝑈 ) ∈ 𝑅 ( ‘ ( 𝐿 ) ) )
52 51 ne0d ( 𝜑 𝑅 ( ‘ ( 𝐿 ) ) ≠ ∅ )
53 34 52 eqnetrd ( 𝜑𝑄 ≠ ∅ )
54 eqid ( +g𝑈 ) = ( +g𝑈 )
55 rabeq ( 𝐹 = ( LFnl ‘ 𝑈 ) → { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
56 5 55 ax-mp { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
57 9 56 eqtri 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
58 11 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
59 12 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → 𝑅𝑇 )
60 13 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → 𝑅𝐶 )
61 simpr2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → 𝑎𝑄 )
62 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
63 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
64 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
65 simpr1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) )
66 1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65 lcfrlem5 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ∈ 𝑄 )
67 simpr3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → 𝑏𝑄 )
68 1 2 3 54 5 6 7 8 57 16 58 59 60 66 67 lcfrlem42 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎𝑄𝑏𝑄 ) ) → ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) ∈ 𝑄 )
69 68 ralrimivvva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∀ 𝑎𝑄𝑏𝑄 ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) ∈ 𝑄 )
70 62 63 18 54 64 4 islss ( 𝑄𝑆 ↔ ( 𝑄 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑄 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∀ 𝑎𝑄𝑏𝑄 ( ( 𝑥 ( ·𝑠𝑈 ) 𝑎 ) ( +g𝑈 ) 𝑏 ) ∈ 𝑄 ) )
71 33 53 69 70 syl3anbrc ( 𝜑𝑄𝑆 )