Step |
Hyp |
Ref |
Expression |
1 |
|
lcfr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfr.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfr.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
|
lcfr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfr.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfr.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfr.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfr.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
|
lcfr.q |
⊢ 𝑄 = ∪ 𝑔 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
11 |
|
lcfr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lcfr.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑇 ) |
13 |
|
lcfr.rs |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐶 ) |
14 |
|
2fveq3 |
⊢ ( 𝑔 = ℎ → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) = ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
15 |
14
|
cbviunv |
⊢ ∪ 𝑔 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) = ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) |
16 |
10 15
|
eqtri |
⊢ 𝑄 = ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) |
17 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑅 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
19 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑅 ) → 𝑈 ∈ LMod ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
22 |
21 8
|
lssss |
⊢ ( 𝑅 ∈ 𝑇 → 𝑅 ⊆ ( Base ‘ 𝐷 ) ) |
23 |
12 22
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝐷 ) ) |
24 |
5 7 21 19
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
25 |
23 24
|
sseqtrd |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐹 ) |
26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑅 ) → ℎ ∈ 𝐹 ) |
27 |
18 5 6 20 26
|
lkrssv |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑅 ) → ( 𝐿 ‘ ℎ ) ⊆ ( Base ‘ 𝑈 ) ) |
28 |
1 3 18 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ ℎ ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ) |
29 |
17 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑅 ) → ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ) |
31 |
|
iunss |
⊢ ( ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ↔ ∀ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ) |
32 |
30 31
|
sylibr |
⊢ ( 𝜑 → ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ⊆ ( Base ‘ 𝑈 ) ) |
33 |
16 32
|
eqsstrid |
⊢ ( 𝜑 → 𝑄 ⊆ ( Base ‘ 𝑈 ) ) |
34 |
16
|
a1i |
⊢ ( 𝜑 → 𝑄 = ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
35 |
7 19
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
37 |
36 8
|
lss0cl |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝑅 ∈ 𝑇 ) → ( 0g ‘ 𝐷 ) ∈ 𝑅 ) |
38 |
35 12 37
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) ∈ 𝑅 ) |
39 |
5 7 36 19
|
ldual0vcl |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) ∈ 𝐹 ) |
40 |
18 5 6 19 39
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝑈 ) ) |
41 |
1 3 18 4 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ∈ 𝑆 ) |
42 |
11 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ∈ 𝑆 ) |
43 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
44 |
43 4
|
lss0cl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ∈ 𝑆 ) → ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ) |
45 |
19 42 44
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ) |
46 |
|
2fveq3 |
⊢ ( ℎ = ( 0g ‘ 𝐷 ) → ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ) |
47 |
46
|
eleq2d |
⊢ ( ℎ = ( 0g ‘ 𝐷 ) → ( ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ↔ ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ) ) |
48 |
47
|
rspcev |
⊢ ( ( ( 0g ‘ 𝐷 ) ∈ 𝑅 ∧ ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 0g ‘ 𝐷 ) ) ) ) → ∃ ℎ ∈ 𝑅 ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
49 |
38 45 48
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ∈ 𝑅 ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
50 |
|
eliun |
⊢ ( ( 0g ‘ 𝑈 ) ∈ ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ↔ ∃ ℎ ∈ 𝑅 ( 0g ‘ 𝑈 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
51 |
49 50
|
sylibr |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ) |
52 |
51
|
ne0d |
⊢ ( 𝜑 → ∪ ℎ ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ ℎ ) ) ≠ ∅ ) |
53 |
34 52
|
eqnetrd |
⊢ ( 𝜑 → 𝑄 ≠ ∅ ) |
54 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
55 |
|
rabeq |
⊢ ( 𝐹 = ( LFnl ‘ 𝑈 ) → { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
56 |
5 55
|
ax-mp |
⊢ { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
57 |
9 56
|
eqtri |
⊢ 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
58 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
59 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → 𝑅 ∈ 𝑇 ) |
60 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → 𝑅 ⊆ 𝐶 ) |
61 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → 𝑎 ∈ 𝑄 ) |
62 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
63 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
64 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
65 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
66 |
1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65
|
lcfrlem5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ∈ 𝑄 ) |
67 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → 𝑏 ∈ 𝑄 ) |
68 |
1 2 3 54 5 6 7 8 57 16 58 59 60 66 67
|
lcfrlem42 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑄 ∧ 𝑏 ∈ 𝑄 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ 𝑄 ) |
69 |
68
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∀ 𝑎 ∈ 𝑄 ∀ 𝑏 ∈ 𝑄 ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ 𝑄 ) |
70 |
62 63 18 54 64 4
|
islss |
⊢ ( 𝑄 ∈ 𝑆 ↔ ( 𝑄 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑄 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∀ 𝑎 ∈ 𝑄 ∀ 𝑏 ∈ 𝑄 ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ 𝑄 ) ) |
71 |
33 53 69 70
|
syl3anbrc |
⊢ ( 𝜑 → 𝑄 ∈ 𝑆 ) |