Metamath Proof Explorer


Theorem lcfrlem42

Description: Lemma for lcfr . Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.p + = ( +g𝑈 )
lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem38.g ( 𝜑𝐺𝑄 )
lcfrlem38.gs ( 𝜑𝐺𝐶 )
lcfrlem38.xe ( 𝜑𝑋𝐸 )
lcfrlem38.ye ( 𝜑𝑌𝐸 )
Assertion lcfrlem42 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem38.p + = ( +g𝑈 )
5 lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
9 lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
11 lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcfrlem38.g ( 𝜑𝐺𝑄 )
13 lcfrlem38.gs ( 𝜑𝐺𝐶 )
14 lcfrlem38.xe ( 𝜑𝑋𝐸 )
15 lcfrlem38.ye ( 𝜑𝑌𝐸 )
16 1 3 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
17 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
18 1 2 3 17 6 7 8 10 11 12 14 lcfrlem4 ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
19 1 2 3 17 6 7 8 10 11 12 15 lcfrlem4 ( 𝜑𝑌 ∈ ( Base ‘ 𝑈 ) )
20 17 4 lmodcom ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ∧ 𝑌 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
21 16 18 19 20 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
22 21 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
23 11 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 12 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → 𝐺𝑄 )
25 15 adantr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → 𝑌𝐸 )
26 eqid ( 0g𝑈 ) = ( 0g𝑈 )
27 simpr ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → 𝑋 = ( 0g𝑈 ) )
28 1 2 3 4 6 7 8 23 24 10 25 26 27 lcfrlem7 ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝑌 + 𝑋 ) ∈ 𝐸 )
29 22 28 eqeltrd ( ( 𝜑𝑋 = ( 0g𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
30 11 adantr ( ( 𝜑𝑌 = ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 12 adantr ( ( 𝜑𝑌 = ( 0g𝑈 ) ) → 𝐺𝑄 )
32 14 adantr ( ( 𝜑𝑌 = ( 0g𝑈 ) ) → 𝑋𝐸 )
33 simpr ( ( 𝜑𝑌 = ( 0g𝑈 ) ) → 𝑌 = ( 0g𝑈 ) )
34 1 2 3 4 6 7 8 30 31 10 32 26 33 lcfrlem7 ( ( 𝜑𝑌 = ( 0g𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
35 11 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
36 12 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝐺𝑄 )
37 13 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝐺𝐶 )
38 14 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝑋𝐸 )
39 15 adantr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝑌𝐸 )
40 simprl ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝑋 ≠ ( 0g𝑈 ) )
41 simprr ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → 𝑌 ≠ ( 0g𝑈 ) )
42 1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 26 40 41 lcfrlem41 ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g𝑈 ) ∧ 𝑌 ≠ ( 0g𝑈 ) ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
43 29 34 42 pm2.61da2ne ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )