| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem38.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem38.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem38.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem38.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 5 |
|
lcfrlem38.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
lcfrlem38.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
lcfrlem38.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 8 |
|
lcfrlem38.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
| 9 |
|
lcfrlem38.c |
⊢ 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 10 |
|
lcfrlem38.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
| 11 |
|
lcfrlem38.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
lcfrlem38.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
| 13 |
|
lcfrlem38.gs |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
| 14 |
|
lcfrlem38.xe |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 15 |
|
lcfrlem38.ye |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
| 16 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 18 |
1 2 3 17 6 7 8 10 11 12 14
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
| 19 |
1 2 3 17 6 7 8 10 11 12 15
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑈 ) ) |
| 20 |
17 4
|
lmodcom |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ∧ 𝑌 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 21 |
16 18 19 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 23 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 24 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝐺 ∈ 𝑄 ) |
| 25 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑌 ∈ 𝐸 ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑋 = ( 0g ‘ 𝑈 ) ) |
| 28 |
1 2 3 4 6 7 8 23 24 10 25 26 27
|
lcfrlem7 |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑌 + 𝑋 ) ∈ 𝐸 ) |
| 29 |
22 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 31 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → 𝐺 ∈ 𝑄 ) |
| 32 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝐸 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → 𝑌 = ( 0g ‘ 𝑈 ) ) |
| 34 |
1 2 3 4 6 7 8 30 31 10 32 26 33
|
lcfrlem7 |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
| 35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝐺 ∈ 𝑄 ) |
| 37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝐺 ⊆ 𝐶 ) |
| 38 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝐸 ) |
| 39 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝐸 ) |
| 40 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
| 41 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ≠ ( 0g ‘ 𝑈 ) ) |
| 42 |
1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 26 40 41
|
lcfrlem41 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
| 43 |
29 34 42
|
pm2.61da2ne |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |