Metamath Proof Explorer


Theorem lcfrlem41

Description: Lemma for lcfr . Eliminate span condition. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.p + = ( +g𝑈 )
lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem38.g ( 𝜑𝐺𝑄 )
lcfrlem38.gs ( 𝜑𝐺𝐶 )
lcfrlem38.xe ( 𝜑𝑋𝐸 )
lcfrlem38.ye ( 𝜑𝑌𝐸 )
lcfrlem38.z 0 = ( 0g𝑈 )
lcfrlem38.x ( 𝜑𝑋0 )
lcfrlem38.y ( 𝜑𝑌0 )
Assertion lcfrlem41 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem38.p + = ( +g𝑈 )
5 lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
9 lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
11 lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcfrlem38.g ( 𝜑𝐺𝑄 )
13 lcfrlem38.gs ( 𝜑𝐺𝐶 )
14 lcfrlem38.xe ( 𝜑𝑋𝐸 )
15 lcfrlem38.ye ( 𝜑𝑌𝐸 )
16 lcfrlem38.z 0 = ( 0g𝑈 )
17 lcfrlem38.x ( 𝜑𝑋0 )
18 lcfrlem38.y ( 𝜑𝑌0 )
19 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
20 11 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 12 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝐺𝑄 )
22 14 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑋𝐸 )
23 15 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑌𝐸 )
24 simpr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
25 1 2 3 4 19 6 7 8 20 21 10 22 23 24 lcfrlem6 ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
26 11 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 12 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝐺𝑄 )
28 13 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝐺𝐶 )
29 14 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑋𝐸 )
30 15 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑌𝐸 )
31 17 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑋0 )
32 18 adantr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → 𝑌0 )
33 simpr ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) )
34 1 2 3 4 5 6 7 8 9 10 26 27 28 29 30 16 31 32 19 33 lcfrlem40 ( ( 𝜑 ∧ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑌 } ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
35 25 34 pm2.61dane ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )