Metamath Proof Explorer


Theorem lcfrlem6

Description: Lemma for lcfr . Closure of vector sum with colinear vectors. TODO: Move down N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem6.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem6.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem6.p + = ( +g𝑈 )
lcfrlem6.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem6.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem6.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem6.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem6.g ( 𝜑𝐺𝑄 )
lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem6.x ( 𝜑𝑋𝐸 )
lcfrlem6.y ( 𝜑𝑌𝐸 )
lcfrlem6.en ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
Assertion lcfrlem6 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem6.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem6.p + = ( +g𝑈 )
5 lcfrlem6.n 𝑁 = ( LSpan ‘ 𝑈 )
6 lcfrlem6.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfrlem6.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem6.q 𝑄 = ( LSubSp ‘ 𝐷 )
9 lcfrlem6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem6.g ( 𝜑𝐺𝑄 )
11 lcfrlem6.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
12 lcfrlem6.x ( 𝜑𝑋𝐸 )
13 lcfrlem6.y ( 𝜑𝑌𝐸 )
14 lcfrlem6.en ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
15 12 11 eleqtrdi ( 𝜑𝑋 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) )
16 eliun ( 𝑋 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ↔ ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
17 15 16 sylib ( 𝜑 → ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
18 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
19 18 adantr ( ( 𝜑𝑔𝐺 ) → 𝑈 ∈ LMod )
20 19 adantr ( ( ( 𝜑𝑔𝐺 ) ∧ 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑈 ∈ LMod )
21 9 adantr ( ( 𝜑𝑔𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
22 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
23 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
24 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
25 24 8 lssel ( ( 𝐺𝑄𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
26 10 25 sylan ( ( 𝜑𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
27 23 7 24 18 ldualvbase ( 𝜑 → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) )
28 27 adantr ( ( 𝜑𝑔𝐺 ) → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) )
29 26 28 eleqtrd ( ( 𝜑𝑔𝐺 ) → 𝑔 ∈ ( LFnl ‘ 𝑈 ) )
30 22 23 6 19 29 lkrssv ( ( 𝜑𝑔𝐺 ) → ( 𝐿𝑔 ) ⊆ ( Base ‘ 𝑈 ) )
31 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
32 1 3 22 31 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿𝑔 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ‘ ( 𝐿𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
33 21 30 32 syl2anc ( ( 𝜑𝑔𝐺 ) → ( ‘ ( 𝐿𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
34 33 adantr ( ( ( 𝜑𝑔𝐺 ) ∧ 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ‘ ( 𝐿𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
35 simpr ( ( ( 𝜑𝑔𝐺 ) ∧ 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
36 14 adantr ( ( 𝜑𝑔𝐺 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
37 36 adantr ( ( ( 𝜑𝑔𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
38 simpr ( ( ( 𝜑𝑔𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) )
39 37 38 eqsstrrd ( ( ( 𝜑𝑔𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) )
40 39 ex ( ( 𝜑𝑔𝐺 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) )
41 1 2 3 22 6 7 8 11 9 10 12 lcfrlem4 ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
42 41 adantr ( ( 𝜑𝑔𝐺 ) → 𝑋 ∈ ( Base ‘ 𝑈 ) )
43 22 31 5 19 33 42 lspsnel5 ( ( 𝜑𝑔𝐺 ) → ( 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) )
44 1 2 3 22 6 7 8 11 9 10 13 lcfrlem4 ( 𝜑𝑌 ∈ ( Base ‘ 𝑈 ) )
45 44 adantr ( ( 𝜑𝑔𝐺 ) → 𝑌 ∈ ( Base ‘ 𝑈 ) )
46 22 31 5 19 33 45 lspsnel5 ( ( 𝜑𝑔𝐺 ) → ( 𝑌 ∈ ( ‘ ( 𝐿𝑔 ) ) ↔ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ‘ ( 𝐿𝑔 ) ) ) )
47 40 43 46 3imtr4d ( ( 𝜑𝑔𝐺 ) → ( 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) → 𝑌 ∈ ( ‘ ( 𝐿𝑔 ) ) ) )
48 47 imp ( ( ( 𝜑𝑔𝐺 ) ∧ 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑌 ∈ ( ‘ ( 𝐿𝑔 ) ) )
49 4 31 lssvacl ( ( ( 𝑈 ∈ LMod ∧ ( ‘ ( 𝐿𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ∧ 𝑌 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
50 20 34 35 48 49 syl22anc ( ( ( 𝜑𝑔𝐺 ) ∧ 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
51 50 ex ( ( 𝜑𝑔𝐺 ) → ( 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) → ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) ) )
52 51 reximdva ( 𝜑 → ( ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) → ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) ) )
53 17 52 mpd ( 𝜑 → ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
54 eliun ( ( 𝑋 + 𝑌 ) ∈ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ↔ ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
55 53 54 sylibr ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) )
56 55 11 eleqtrrdi ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )