Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem6.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem6.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
lcfrlem6.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
lcfrlem6.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfrlem6.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem6.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfrlem6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem6.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
11 |
|
lcfrlem6.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
12 |
|
lcfrlem6.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
13 |
|
lcfrlem6.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
14 |
|
lcfrlem6.en |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
15 |
12 11
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
16 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
17 |
15 16
|
sylib |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
18 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑈 ∈ LMod ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑈 ∈ LMod ) |
21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
23 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
25 |
24 8
|
lssel |
⊢ ( ( 𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
26 |
10 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
27 |
23 7 24 18
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) ) |
29 |
26 28
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( LFnl ‘ 𝑈 ) ) |
30 |
22 23 6 19 29
|
lkrssv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐿 ‘ 𝑔 ) ⊆ ( Base ‘ 𝑈 ) ) |
31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
32 |
1 3 22 31 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝑔 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
33 |
21 30 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
36 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
39 |
37 38
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
41 |
1 2 3 22 6 7 8 11 9 10 12
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
43 |
22 31 5 19 33 42
|
lspsnel5 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
44 |
1 2 3 22 6 7 8 11 9 10 13
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑈 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑌 ∈ ( Base ‘ 𝑈 ) ) |
46 |
22 31 5 19 33 45
|
lspsnel5 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝑌 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
47 |
40 43 46
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) → 𝑌 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
48 |
47
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑌 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
49 |
4 31
|
lssvacl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∧ 𝑌 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
50 |
20 34 35 48 49
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
51 |
50
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
52 |
51
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ) |
53 |
17 52
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
54 |
|
eliun |
⊢ ( ( 𝑋 + 𝑌 ) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
55 |
53 54
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
56 |
55 11
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |