Metamath Proof Explorer


Theorem lcfrlem7

Description: Lemma for lcfr . Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem7.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem7.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem7.p + = ( +g𝑈 )
lcfrlem7.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem7.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem7.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem7.g ( 𝜑𝐺𝑄 )
lcfrlem7.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem7.x ( 𝜑𝑋𝐸 )
lcfrlem7.z 0 = ( 0g𝑈 )
lcfrlem7.y ( 𝜑𝑌 = 0 )
Assertion lcfrlem7 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem7.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem7.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem7.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem7.p + = ( +g𝑈 )
5 lcfrlem7.l 𝐿 = ( LKer ‘ 𝑈 )
6 lcfrlem7.d 𝐷 = ( LDual ‘ 𝑈 )
7 lcfrlem7.q 𝑄 = ( LSubSp ‘ 𝐷 )
8 lcfrlem7.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 lcfrlem7.g ( 𝜑𝐺𝑄 )
10 lcfrlem7.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
11 lcfrlem7.x ( 𝜑𝑋𝐸 )
12 lcfrlem7.z 0 = ( 0g𝑈 )
13 lcfrlem7.y ( 𝜑𝑌 = 0 )
14 13 oveq2d ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑋 + 0 ) )
15 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
16 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
17 1 2 3 16 5 6 7 10 8 9 11 lcfrlem4 ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
18 16 4 12 lmod0vrid ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 + 0 ) = 𝑋 )
19 15 17 18 syl2anc ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 )
20 14 19 eqtrd ( 𝜑 → ( 𝑋 + 𝑌 ) = 𝑋 )
21 20 11 eqeltrd ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )