| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem7.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem7.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem7.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 5 |
|
lcfrlem7.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 6 |
|
lcfrlem7.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 7 |
|
lcfrlem7.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
| 8 |
|
lcfrlem7.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
lcfrlem7.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
| 10 |
|
lcfrlem7.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
| 11 |
|
lcfrlem7.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 12 |
|
lcfrlem7.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 13 |
|
lcfrlem7.y |
⊢ ( 𝜑 → 𝑌 = 0 ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑋 + 0 ) ) |
| 15 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 17 |
1 2 3 16 5 6 7 10 8 9 11
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
| 18 |
16 4 12
|
lmod0vrid |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 19 |
15 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 ) |
| 20 |
14 19
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = 𝑋 ) |
| 21 |
20 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |