Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcf1o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcf1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcf1o.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcf1o.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
lcf1o.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
8 |
|
lcf1o.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
9 |
|
lcf1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
10 |
|
lcf1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lcf1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
12 |
|
lcf1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
13 |
|
lcf1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
14 |
|
lcf1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
15 |
|
lcf1o.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
16 |
|
lcflo.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
lcfrlem8.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ { 𝑥 } ) = ( ⊥ ‘ { 𝑋 } ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑘 · 𝑥 ) = ( 𝑘 · 𝑋 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑤 + ( 𝑘 · 𝑥 ) ) = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
23 |
19 22
|
rexeqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
24 |
23
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) = ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) |
25 |
24
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) |
26 |
25 15 4
|
mptfvmpt |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → ( 𝐽 ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) |
27 |
17 26
|
syl |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑋 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑋 ) ) ) ) ) |