Metamath Proof Explorer


Theorem lcfrlem9

Description: Lemma for lcf1o . (This part has undesirable $d's on J and ph that we remove in lcf1o .) TODO: ugly proof; maybe have better subtheorems or abbreviate some iota_ k expansions with Jz ? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
lcf1o.a + = ( +g𝑈 )
lcf1o.t · = ( ·𝑠𝑈 )
lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
lcf1o.z 0 = ( 0g𝑈 )
lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
lcf1o.q 𝑄 = ( 0g𝐷 )
lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcfrlem9 ( 𝜑𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
5 lcf1o.a + = ( +g𝑈 )
6 lcf1o.t · = ( ·𝑠𝑈 )
7 lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
8 lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
9 lcf1o.z 0 = ( 0g𝑈 )
10 lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
11 lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
12 lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
13 lcf1o.q 𝑄 = ( 0g𝐷 )
14 lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
15 lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
16 lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 4 fvexi 𝑉 ∈ V
18 17 mptex ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ∈ V
19 18 15 fnmpti 𝐽 Fn ( 𝑉 ∖ { 0 } )
20 19 a1i ( 𝜑𝐽 Fn ( 𝑉 ∖ { 0 } ) )
21 fvelrnb ( 𝐽 Fn ( 𝑉 ∖ { 0 } ) → ( 𝑔 ∈ ran 𝐽 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔 ) )
22 20 21 syl ( 𝜑 → ( 𝑔 ∈ ran 𝐽 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔 ) )
23 16 adantr ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 simpr ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) )
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 lcfrlem8 ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽𝑧 ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
26 eqid ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) )
27 sneq ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } )
28 27 fveq2d ( 𝑦 = 𝑧 → ( ‘ { 𝑦 } ) = ( ‘ { 𝑧 } ) )
29 oveq2 ( 𝑦 = 𝑧 → ( 𝑘 · 𝑦 ) = ( 𝑘 · 𝑧 ) )
30 29 oveq2d ( 𝑦 = 𝑧 → ( 𝑤 + ( 𝑘 · 𝑦 ) ) = ( 𝑤 + ( 𝑘 · 𝑧 ) ) )
31 30 eqeq2d ( 𝑦 = 𝑧 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ↔ 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) )
32 28 31 rexeqbidv ( 𝑦 = 𝑧 → ( ∃ 𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ↔ ∃ 𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) )
33 32 riotabidv ( 𝑦 = 𝑧 → ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) = ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) )
34 33 mpteq2dv ( 𝑦 = 𝑧 → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
35 34 rspceeqv ( ( 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) )
36 24 26 35 sylancl ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) )
37 36 olcd ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ∨ ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) )
38 1 2 3 4 9 5 6 10 7 8 26 23 24 dochflcl ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐹 )
39 1 2 3 4 5 6 7 8 9 10 11 14 23 38 lcfl6 ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 ↔ ( ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ∨ ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) ) )
40 37 39 mpbird ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 )
41 1 2 3 4 9 5 6 11 7 8 26 23 24 dochsnkr2cl ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( ( ‘ ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ∖ { 0 } ) )
42 1 2 3 4 9 10 11 23 38 41 dochsnkrlem3 ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ) = ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
43 1 2 3 4 9 10 11 23 38 41 dochsnkrlem1 ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ‘ ( ‘ ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ) ≠ 𝑉 )
44 42 43 eqnetrrd ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ≠ 𝑉 )
45 1 3 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
46 45 adantr ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑈 ∈ LMod )
47 4 10 11 12 13 46 38 lkr0f2 ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ↔ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = 𝑄 ) )
48 47 necon3bid ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ≠ 𝑉 ↔ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 ) )
49 44 48 mpbid ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 )
50 eldifsn ( ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ ( ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 ∧ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 ) )
51 40 49 50 sylanbrc ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ ( 𝐶 ∖ { 𝑄 } ) )
52 25 51 eqeltrd ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽𝑧 ) ∈ ( 𝐶 ∖ { 𝑄 } ) )
53 eleq1 ( ( 𝐽𝑧 ) = 𝑔 → ( ( 𝐽𝑧 ) ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) )
54 52 53 syl5ibcom ( ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐽𝑧 ) = 𝑔𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) )
55 54 rexlimdva ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) )
56 eldifsn ( 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝑔𝐶𝑔𝑄 ) )
57 simprl ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → 𝑔𝐶 )
58 45 adantr ( ( 𝜑𝑔𝐶 ) → 𝑈 ∈ LMod )
59 14 lcfl1lem ( 𝑔𝐶 ↔ ( 𝑔𝐹 ∧ ( ‘ ( ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) ) )
60 59 simplbi ( 𝑔𝐶𝑔𝐹 )
61 60 adantl ( ( 𝜑𝑔𝐶 ) → 𝑔𝐹 )
62 4 10 11 12 13 58 61 lkr0f2 ( ( 𝜑𝑔𝐶 ) → ( ( 𝐿𝑔 ) = 𝑉𝑔 = 𝑄 ) )
63 62 necon3bid ( ( 𝜑𝑔𝐶 ) → ( ( 𝐿𝑔 ) ≠ 𝑉𝑔𝑄 ) )
64 63 biimprd ( ( 𝜑𝑔𝐶 ) → ( 𝑔𝑄 → ( 𝐿𝑔 ) ≠ 𝑉 ) )
65 64 impr ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → ( 𝐿𝑔 ) ≠ 𝑉 )
66 65 neneqd ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → ¬ ( 𝐿𝑔 ) = 𝑉 )
67 16 adantr ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
68 60 adantr ( ( 𝑔𝐶𝑔𝑄 ) → 𝑔𝐹 )
69 68 adantl ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → 𝑔𝐹 )
70 1 2 3 4 5 6 7 8 9 10 11 14 67 69 lcfl6 ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → ( 𝑔𝐶 ↔ ( ( 𝐿𝑔 ) = 𝑉 ∨ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) )
71 70 biimpa ( ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) ∧ 𝑔𝐶 ) → ( ( 𝐿𝑔 ) = 𝑉 ∨ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
72 71 ord ( ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) ∧ 𝑔𝐶 ) → ( ¬ ( 𝐿𝑔 ) = 𝑉 → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
73 72 3impia ( ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) ∧ 𝑔𝐶 ∧ ¬ ( 𝐿𝑔 ) = 𝑉 ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
74 57 66 73 mpd3an23 ( ( 𝜑 ∧ ( 𝑔𝐶𝑔𝑄 ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
75 56 74 sylan2b ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
76 eqcom ( ( 𝐽𝑧 ) = 𝑔𝑔 = ( 𝐽𝑧 ) )
77 16 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
78 simpr ( ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) )
79 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 77 78 lcfrlem8 ( ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽𝑧 ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) )
80 79 eqeq2d ( ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑔 = ( 𝐽𝑧 ) ↔ 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
81 76 80 syl5bb ( ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐽𝑧 ) = 𝑔𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
82 81 rexbidva ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) )
83 75 82 mpbird ( ( 𝜑𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔 )
84 83 ex ( 𝜑 → ( 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔 ) )
85 55 84 impbid ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽𝑧 ) = 𝑔𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) )
86 22 85 bitrd ( 𝜑 → ( 𝑔 ∈ ran 𝐽𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) )
87 86 eqrdv ( 𝜑 → ran 𝐽 = ( 𝐶 ∖ { 𝑄 } ) )
88 16 ad2antrr ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
89 eqid ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) )
90 eqid ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) )
91 simplrl ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) )
92 simplrr ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → 𝑢 ∈ ( 𝑉 ∖ { 0 } ) )
93 simpr ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → ( 𝐽𝑡 ) = ( 𝐽𝑢 ) )
94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 91 lcfrlem8 ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → ( 𝐽𝑡 ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) )
95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 92 lcfrlem8 ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → ( 𝐽𝑢 ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) )
96 93 94 95 3eqtr3d ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) = ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) )
97 1 2 3 4 5 6 7 8 9 10 11 88 89 90 91 92 96 lcfl7lem ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽𝑡 ) = ( 𝐽𝑢 ) ) → 𝑡 = 𝑢 )
98 97 ex ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) → ( ( 𝐽𝑡 ) = ( 𝐽𝑢 ) → 𝑡 = 𝑢 ) )
99 98 ralrimivva ( 𝜑 → ∀ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∀ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝐽𝑡 ) = ( 𝐽𝑢 ) → 𝑡 = 𝑢 ) )
100 dff1o6 ( 𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝐽 Fn ( 𝑉 ∖ { 0 } ) ∧ ran 𝐽 = ( 𝐶 ∖ { 𝑄 } ) ∧ ∀ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∀ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝐽𝑡 ) = ( 𝐽𝑢 ) → 𝑡 = 𝑢 ) ) )
101 20 87 99 100 syl3anbrc ( 𝜑𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )