| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcf1o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcf1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcf1o.a |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
lcf1o.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 7 |
|
lcf1o.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 8 |
|
lcf1o.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 9 |
|
lcf1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 10 |
|
lcf1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 11 |
|
lcf1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 12 |
|
lcf1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 13 |
|
lcf1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
| 14 |
|
lcf1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
| 15 |
|
lcf1o.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
| 16 |
|
lcflo.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
4
|
fvexi |
⊢ 𝑉 ∈ V |
| 18 |
17
|
mptex |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ∈ V |
| 19 |
18 15
|
fnmpti |
⊢ 𝐽 Fn ( 𝑉 ∖ { 0 } ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑉 ∖ { 0 } ) ) |
| 21 |
|
fvelrnb |
⊢ ( 𝐽 Fn ( 𝑉 ∖ { 0 } ) → ( 𝑔 ∈ ran 𝐽 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝑔 ∈ ran 𝐽 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ) ) |
| 23 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24
|
lcfrlem8 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽 ‘ 𝑧 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 26 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) |
| 27 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( ⊥ ‘ { 𝑦 } ) = ( ⊥ ‘ { 𝑧 } ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑘 · 𝑦 ) = ( 𝑘 · 𝑧 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 + ( 𝑘 · 𝑦 ) ) = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) |
| 31 |
30
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ↔ 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) |
| 32 |
28 31
|
rexeqbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) |
| 33 |
32
|
riotabidv |
⊢ ( 𝑦 = 𝑧 → ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) = ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) |
| 34 |
33
|
mpteq2dv |
⊢ ( 𝑦 = 𝑧 → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 35 |
34
|
rspceeqv |
⊢ ( ( 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) |
| 36 |
24 26 35
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) |
| 37 |
36
|
olcd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ∨ ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) ) |
| 38 |
1 2 3 4 9 5 6 10 7 8 26 23 24
|
dochflcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐹 ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 14 23 38
|
lcfl6 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 ↔ ( ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ∨ ∃ 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑦 ) ) ) ) ) ) ) |
| 40 |
37 39
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 ) |
| 41 |
1 2 3 4 9 5 6 11 7 8 26 23 24
|
dochsnkr2cl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ∖ { 0 } ) ) |
| 42 |
1 2 3 4 9 10 11 23 38 41
|
dochsnkrlem3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ) = ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 43 |
1 2 3 4 9 10 11 23 38 41
|
dochsnkrlem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ) ≠ 𝑉 ) |
| 44 |
42 43
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ≠ 𝑉 ) |
| 45 |
1 3 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑈 ∈ LMod ) |
| 47 |
4 10 11 12 13 46 38
|
lkr0f2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) = 𝑉 ↔ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) = 𝑄 ) ) |
| 48 |
47
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐿 ‘ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ≠ 𝑉 ↔ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 ) ) |
| 49 |
44 48
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 ) |
| 50 |
|
eldifsn |
⊢ ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ 𝐶 ∧ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ≠ 𝑄 ) ) |
| 51 |
40 49 50
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ∈ ( 𝐶 ∖ { 𝑄 } ) ) |
| 52 |
25 51
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽 ‘ 𝑧 ) ∈ ( 𝐶 ∖ { 𝑄 } ) ) |
| 53 |
|
eleq1 |
⊢ ( ( 𝐽 ‘ 𝑧 ) = 𝑔 → ( ( 𝐽 ‘ 𝑧 ) ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ) |
| 54 |
52 53
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐽 ‘ 𝑧 ) = 𝑔 → 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ) |
| 55 |
54
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 → 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ) |
| 56 |
|
eldifsn |
⊢ ( 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) |
| 57 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → 𝑔 ∈ 𝐶 ) |
| 58 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑈 ∈ LMod ) |
| 59 |
14
|
lcfl1lem |
⊢ ( 𝑔 ∈ 𝐶 ↔ ( 𝑔 ∈ 𝐹 ∧ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) ) ) |
| 60 |
59
|
simplbi |
⊢ ( 𝑔 ∈ 𝐶 → 𝑔 ∈ 𝐹 ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑔 ∈ 𝐹 ) |
| 62 |
4 10 11 12 13 58 61
|
lkr0f2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = 𝑄 ) ) |
| 63 |
62
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑔 ) ≠ 𝑉 ↔ 𝑔 ≠ 𝑄 ) ) |
| 64 |
63
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑔 ≠ 𝑄 → ( 𝐿 ‘ 𝑔 ) ≠ 𝑉 ) ) |
| 65 |
64
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → ( 𝐿 ‘ 𝑔 ) ≠ 𝑉 ) |
| 66 |
65
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → ¬ ( 𝐿 ‘ 𝑔 ) = 𝑉 ) |
| 67 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 68 |
60
|
adantr |
⊢ ( ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) → 𝑔 ∈ 𝐹 ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → 𝑔 ∈ 𝐹 ) |
| 70 |
1 2 3 4 5 6 7 8 9 10 11 14 67 69
|
lcfl6 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → ( 𝑔 ∈ 𝐶 ↔ ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ∨ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) ) |
| 71 |
70
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) ∧ 𝑔 ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ∨ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 72 |
71
|
ord |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) ∧ 𝑔 ∈ 𝐶 ) → ( ¬ ( 𝐿 ‘ 𝑔 ) = 𝑉 → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 73 |
72
|
3impia |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) ∧ 𝑔 ∈ 𝐶 ∧ ¬ ( 𝐿 ‘ 𝑔 ) = 𝑉 ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 74 |
57 66 73
|
mpd3an23 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐶 ∧ 𝑔 ≠ 𝑄 ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 75 |
56 74
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 76 |
|
eqcom |
⊢ ( ( 𝐽 ‘ 𝑧 ) = 𝑔 ↔ 𝑔 = ( 𝐽 ‘ 𝑧 ) ) |
| 77 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 77 78
|
lcfrlem8 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐽 ‘ 𝑧 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) |
| 80 |
79
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑔 = ( 𝐽 ‘ 𝑧 ) ↔ 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 81 |
76 80
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ∧ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) → ( ( 𝐽 ‘ 𝑧 ) = 𝑔 ↔ 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 82 |
81
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ↔ ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) 𝑔 = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑧 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑧 ) ) ) ) ) ) |
| 83 |
75 82
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ) |
| 84 |
83
|
ex |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ) ) |
| 85 |
55 84
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐽 ‘ 𝑧 ) = 𝑔 ↔ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ) |
| 86 |
22 85
|
bitrd |
⊢ ( 𝜑 → ( 𝑔 ∈ ran 𝐽 ↔ 𝑔 ∈ ( 𝐶 ∖ { 𝑄 } ) ) ) |
| 87 |
86
|
eqrdv |
⊢ ( 𝜑 → ran 𝐽 = ( 𝐶 ∖ { 𝑄 } ) ) |
| 88 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 89 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) |
| 90 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) |
| 91 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 92 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 93 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) |
| 94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 91
|
lcfrlem8 |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → ( 𝐽 ‘ 𝑡 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) ) |
| 95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 92
|
lcfrlem8 |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → ( 𝐽 ‘ 𝑢 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) ) |
| 96 |
93 94 95
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑡 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑡 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑢 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑢 ) ) ) ) ) |
| 97 |
1 2 3 4 5 6 7 8 9 10 11 88 89 90 91 92 96
|
lcfl7lem |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) ∧ ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) ) → 𝑡 = 𝑢 ) |
| 98 |
97
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ) ) → ( ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) |
| 99 |
98
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∀ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) |
| 100 |
|
dff1o6 |
⊢ ( 𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝐽 Fn ( 𝑉 ∖ { 0 } ) ∧ ran 𝐽 = ( 𝐶 ∖ { 𝑄 } ) ∧ ∀ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ∀ 𝑢 ∈ ( 𝑉 ∖ { 0 } ) ( ( 𝐽 ‘ 𝑡 ) = ( 𝐽 ‘ 𝑢 ) → 𝑡 = 𝑢 ) ) ) |
| 101 |
20 87 99 100
|
syl3anbrc |
⊢ ( 𝜑 → 𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) |