| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
|
| 2 |
|
lcf1o.o |
|
| 3 |
|
lcf1o.u |
|
| 4 |
|
lcf1o.v |
|
| 5 |
|
lcf1o.a |
|
| 6 |
|
lcf1o.t |
|
| 7 |
|
lcf1o.s |
|
| 8 |
|
lcf1o.r |
|
| 9 |
|
lcf1o.z |
|
| 10 |
|
lcf1o.f |
|
| 11 |
|
lcf1o.l |
|
| 12 |
|
lcf1o.d |
|
| 13 |
|
lcf1o.q |
|
| 14 |
|
lcf1o.c |
|
| 15 |
|
lcf1o.j |
|
| 16 |
|
lcflo.k |
|
| 17 |
4
|
fvexi |
|
| 18 |
17
|
mptex |
|
| 19 |
18 15
|
fnmpti |
|
| 20 |
19
|
a1i |
|
| 21 |
|
fvelrnb |
|
| 22 |
20 21
|
syl |
|
| 23 |
16
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24
|
lcfrlem8 |
|
| 26 |
|
eqid |
|
| 27 |
|
sneq |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
28 31
|
rexeqbidv |
|
| 33 |
32
|
riotabidv |
|
| 34 |
33
|
mpteq2dv |
|
| 35 |
34
|
rspceeqv |
|
| 36 |
24 26 35
|
sylancl |
|
| 37 |
36
|
olcd |
|
| 38 |
1 2 3 4 9 5 6 10 7 8 26 23 24
|
dochflcl |
|
| 39 |
1 2 3 4 5 6 7 8 9 10 11 14 23 38
|
lcfl6 |
|
| 40 |
37 39
|
mpbird |
|
| 41 |
1 2 3 4 9 5 6 11 7 8 26 23 24
|
dochsnkr2cl |
|
| 42 |
1 2 3 4 9 10 11 23 38 41
|
dochsnkrlem3 |
|
| 43 |
1 2 3 4 9 10 11 23 38 41
|
dochsnkrlem1 |
|
| 44 |
42 43
|
eqnetrrd |
|
| 45 |
1 3 16
|
dvhlmod |
|
| 46 |
45
|
adantr |
|
| 47 |
4 10 11 12 13 46 38
|
lkr0f2 |
|
| 48 |
47
|
necon3bid |
|
| 49 |
44 48
|
mpbid |
|
| 50 |
|
eldifsn |
|
| 51 |
40 49 50
|
sylanbrc |
|
| 52 |
25 51
|
eqeltrd |
|
| 53 |
|
eleq1 |
|
| 54 |
52 53
|
syl5ibcom |
|
| 55 |
54
|
rexlimdva |
|
| 56 |
|
eldifsn |
|
| 57 |
|
simprl |
|
| 58 |
45
|
adantr |
|
| 59 |
14
|
lcfl1lem |
|
| 60 |
59
|
simplbi |
|
| 61 |
60
|
adantl |
|
| 62 |
4 10 11 12 13 58 61
|
lkr0f2 |
|
| 63 |
62
|
necon3bid |
|
| 64 |
63
|
biimprd |
|
| 65 |
64
|
impr |
|
| 66 |
65
|
neneqd |
|
| 67 |
16
|
adantr |
|
| 68 |
60
|
adantr |
|
| 69 |
68
|
adantl |
|
| 70 |
1 2 3 4 5 6 7 8 9 10 11 14 67 69
|
lcfl6 |
|
| 71 |
70
|
biimpa |
|
| 72 |
71
|
ord |
|
| 73 |
72
|
3impia |
|
| 74 |
57 66 73
|
mpd3an23 |
|
| 75 |
56 74
|
sylan2b |
|
| 76 |
|
eqcom |
|
| 77 |
16
|
ad2antrr |
|
| 78 |
|
simpr |
|
| 79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 77 78
|
lcfrlem8 |
|
| 80 |
79
|
eqeq2d |
|
| 81 |
76 80
|
bitrid |
|
| 82 |
81
|
rexbidva |
|
| 83 |
75 82
|
mpbird |
|
| 84 |
83
|
ex |
|
| 85 |
55 84
|
impbid |
|
| 86 |
22 85
|
bitrd |
|
| 87 |
86
|
eqrdv |
|
| 88 |
16
|
ad2antrr |
|
| 89 |
|
eqid |
|
| 90 |
|
eqid |
|
| 91 |
|
simplrl |
|
| 92 |
|
simplrr |
|
| 93 |
|
simpr |
|
| 94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 91
|
lcfrlem8 |
|
| 95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 92
|
lcfrlem8 |
|
| 96 |
93 94 95
|
3eqtr3d |
|
| 97 |
1 2 3 4 5 6 7 8 9 10 11 88 89 90 91 92 96
|
lcfl7lem |
|
| 98 |
97
|
ex |
|
| 99 |
98
|
ralrimivva |
|
| 100 |
|
dff1o6 |
|
| 101 |
20 87 99 100
|
syl3anbrc |
|