Metamath Proof Explorer


Theorem lcfrlem9

Description: Lemma for lcf1o . (This part has undesirable $d's on J and ph that we remove in lcf1o .) TODO: ugly proof; maybe have better subtheorems or abbreviate some iota_ k expansions with Jz ? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H = LHyp K
lcf1o.o ˙ = ocH K W
lcf1o.u U = DVecH K W
lcf1o.v V = Base U
lcf1o.a + ˙ = + U
lcf1o.t · ˙ = U
lcf1o.s S = Scalar U
lcf1o.r R = Base S
lcf1o.z 0 ˙ = 0 U
lcf1o.f F = LFnl U
lcf1o.l L = LKer U
lcf1o.d D = LDual U
lcf1o.q Q = 0 D
lcf1o.c C = f F | ˙ ˙ L f = L f
lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcflo.k φ K HL W H
Assertion lcfrlem9 φ J : V 0 ˙ 1-1 onto C Q

Proof

Step Hyp Ref Expression
1 lcf1o.h H = LHyp K
2 lcf1o.o ˙ = ocH K W
3 lcf1o.u U = DVecH K W
4 lcf1o.v V = Base U
5 lcf1o.a + ˙ = + U
6 lcf1o.t · ˙ = U
7 lcf1o.s S = Scalar U
8 lcf1o.r R = Base S
9 lcf1o.z 0 ˙ = 0 U
10 lcf1o.f F = LFnl U
11 lcf1o.l L = LKer U
12 lcf1o.d D = LDual U
13 lcf1o.q Q = 0 D
14 lcf1o.c C = f F | ˙ ˙ L f = L f
15 lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
16 lcflo.k φ K HL W H
17 4 fvexi V V
18 17 mptex v V ι k R | w ˙ x v = w + ˙ k · ˙ x V
19 18 15 fnmpti J Fn V 0 ˙
20 19 a1i φ J Fn V 0 ˙
21 fvelrnb J Fn V 0 ˙ g ran J z V 0 ˙ J z = g
22 20 21 syl φ g ran J z V 0 ˙ J z = g
23 16 adantr φ z V 0 ˙ K HL W H
24 simpr φ z V 0 ˙ z V 0 ˙
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 lcfrlem8 φ z V 0 ˙ J z = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
26 eqid v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
27 sneq y = z y = z
28 27 fveq2d y = z ˙ y = ˙ z
29 oveq2 y = z k · ˙ y = k · ˙ z
30 29 oveq2d y = z w + ˙ k · ˙ y = w + ˙ k · ˙ z
31 30 eqeq2d y = z v = w + ˙ k · ˙ y v = w + ˙ k · ˙ z
32 28 31 rexeqbidv y = z w ˙ y v = w + ˙ k · ˙ y w ˙ z v = w + ˙ k · ˙ z
33 32 riotabidv y = z ι k R | w ˙ y v = w + ˙ k · ˙ y = ι k R | w ˙ z v = w + ˙ k · ˙ z
34 33 mpteq2dv y = z v V ι k R | w ˙ y v = w + ˙ k · ˙ y = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
35 34 rspceeqv z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ z v = w + ˙ k · ˙ z y V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ y v = w + ˙ k · ˙ y
36 24 26 35 sylancl φ z V 0 ˙ y V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ y v = w + ˙ k · ˙ y
37 36 olcd φ z V 0 ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z = V y V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ y v = w + ˙ k · ˙ y
38 1 2 3 4 9 5 6 10 7 8 26 23 24 dochflcl φ z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z F
39 1 2 3 4 5 6 7 8 9 10 11 14 23 38 lcfl6 φ z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z C L v V ι k R | w ˙ z v = w + ˙ k · ˙ z = V y V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z = v V ι k R | w ˙ y v = w + ˙ k · ˙ y
40 37 39 mpbird φ z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z C
41 1 2 3 4 9 5 6 11 7 8 26 23 24 dochsnkr2cl φ z V 0 ˙ z ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z 0 ˙
42 1 2 3 4 9 10 11 23 38 41 dochsnkrlem3 φ z V 0 ˙ ˙ ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z = L v V ι k R | w ˙ z v = w + ˙ k · ˙ z
43 1 2 3 4 9 10 11 23 38 41 dochsnkrlem1 φ z V 0 ˙ ˙ ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z V
44 42 43 eqnetrrd φ z V 0 ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z V
45 1 3 16 dvhlmod φ U LMod
46 45 adantr φ z V 0 ˙ U LMod
47 4 10 11 12 13 46 38 lkr0f2 φ z V 0 ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z = V v V ι k R | w ˙ z v = w + ˙ k · ˙ z = Q
48 47 necon3bid φ z V 0 ˙ L v V ι k R | w ˙ z v = w + ˙ k · ˙ z V v V ι k R | w ˙ z v = w + ˙ k · ˙ z Q
49 44 48 mpbid φ z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z Q
50 eldifsn v V ι k R | w ˙ z v = w + ˙ k · ˙ z C Q v V ι k R | w ˙ z v = w + ˙ k · ˙ z C v V ι k R | w ˙ z v = w + ˙ k · ˙ z Q
51 40 49 50 sylanbrc φ z V 0 ˙ v V ι k R | w ˙ z v = w + ˙ k · ˙ z C Q
52 25 51 eqeltrd φ z V 0 ˙ J z C Q
53 eleq1 J z = g J z C Q g C Q
54 52 53 syl5ibcom φ z V 0 ˙ J z = g g C Q
55 54 rexlimdva φ z V 0 ˙ J z = g g C Q
56 eldifsn g C Q g C g Q
57 simprl φ g C g Q g C
58 45 adantr φ g C U LMod
59 14 lcfl1lem g C g F ˙ ˙ L g = L g
60 59 simplbi g C g F
61 60 adantl φ g C g F
62 4 10 11 12 13 58 61 lkr0f2 φ g C L g = V g = Q
63 62 necon3bid φ g C L g V g Q
64 63 biimprd φ g C g Q L g V
65 64 impr φ g C g Q L g V
66 65 neneqd φ g C g Q ¬ L g = V
67 16 adantr φ g C g Q K HL W H
68 60 adantr g C g Q g F
69 68 adantl φ g C g Q g F
70 1 2 3 4 5 6 7 8 9 10 11 14 67 69 lcfl6 φ g C g Q g C L g = V z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
71 70 biimpa φ g C g Q g C L g = V z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
72 71 ord φ g C g Q g C ¬ L g = V z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
73 72 3impia φ g C g Q g C ¬ L g = V z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
74 57 66 73 mpd3an23 φ g C g Q z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
75 56 74 sylan2b φ g C Q z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
76 eqcom J z = g g = J z
77 16 ad2antrr φ g C Q z V 0 ˙ K HL W H
78 simpr φ g C Q z V 0 ˙ z V 0 ˙
79 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 77 78 lcfrlem8 φ g C Q z V 0 ˙ J z = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
80 79 eqeq2d φ g C Q z V 0 ˙ g = J z g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
81 76 80 syl5bb φ g C Q z V 0 ˙ J z = g g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
82 81 rexbidva φ g C Q z V 0 ˙ J z = g z V 0 ˙ g = v V ι k R | w ˙ z v = w + ˙ k · ˙ z
83 75 82 mpbird φ g C Q z V 0 ˙ J z = g
84 83 ex φ g C Q z V 0 ˙ J z = g
85 55 84 impbid φ z V 0 ˙ J z = g g C Q
86 22 85 bitrd φ g ran J g C Q
87 86 eqrdv φ ran J = C Q
88 16 ad2antrr φ t V 0 ˙ u V 0 ˙ J t = J u K HL W H
89 eqid v V ι k R | w ˙ t v = w + ˙ k · ˙ t = v V ι k R | w ˙ t v = w + ˙ k · ˙ t
90 eqid v V ι k R | w ˙ u v = w + ˙ k · ˙ u = v V ι k R | w ˙ u v = w + ˙ k · ˙ u
91 simplrl φ t V 0 ˙ u V 0 ˙ J t = J u t V 0 ˙
92 simplrr φ t V 0 ˙ u V 0 ˙ J t = J u u V 0 ˙
93 simpr φ t V 0 ˙ u V 0 ˙ J t = J u J t = J u
94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 91 lcfrlem8 φ t V 0 ˙ u V 0 ˙ J t = J u J t = v V ι k R | w ˙ t v = w + ˙ k · ˙ t
95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 88 92 lcfrlem8 φ t V 0 ˙ u V 0 ˙ J t = J u J u = v V ι k R | w ˙ u v = w + ˙ k · ˙ u
96 93 94 95 3eqtr3d φ t V 0 ˙ u V 0 ˙ J t = J u v V ι k R | w ˙ t v = w + ˙ k · ˙ t = v V ι k R | w ˙ u v = w + ˙ k · ˙ u
97 1 2 3 4 5 6 7 8 9 10 11 88 89 90 91 92 96 lcfl7lem φ t V 0 ˙ u V 0 ˙ J t = J u t = u
98 97 ex φ t V 0 ˙ u V 0 ˙ J t = J u t = u
99 98 ralrimivva φ t V 0 ˙ u V 0 ˙ J t = J u t = u
100 dff1o6 J : V 0 ˙ 1-1 onto C Q J Fn V 0 ˙ ran J = C Q t V 0 ˙ u V 0 ˙ J t = J u t = u
101 20 87 99 100 syl3anbrc φ J : V 0 ˙ 1-1 onto C Q