Metamath Proof Explorer


Theorem lcfrlem8

Description: Lemma for lcf1o and lcfr . (Contributed by NM, 21-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H=LHypK
lcf1o.o ˙=ocHKW
lcf1o.u U=DVecHKW
lcf1o.v V=BaseU
lcf1o.a +˙=+U
lcf1o.t ·˙=U
lcf1o.s S=ScalarU
lcf1o.r R=BaseS
lcf1o.z 0˙=0U
lcf1o.f F=LFnlU
lcf1o.l L=LKerU
lcf1o.d D=LDualU
lcf1o.q Q=0D
lcf1o.c C=fF|˙˙Lf=Lf
lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcflo.k φKHLWH
lcfrlem8.x φXV0˙
Assertion lcfrlem8 φJX=vVιkR|w˙Xv=w+˙k·˙X

Proof

Step Hyp Ref Expression
1 lcf1o.h H=LHypK
2 lcf1o.o ˙=ocHKW
3 lcf1o.u U=DVecHKW
4 lcf1o.v V=BaseU
5 lcf1o.a +˙=+U
6 lcf1o.t ·˙=U
7 lcf1o.s S=ScalarU
8 lcf1o.r R=BaseS
9 lcf1o.z 0˙=0U
10 lcf1o.f F=LFnlU
11 lcf1o.l L=LKerU
12 lcf1o.d D=LDualU
13 lcf1o.q Q=0D
14 lcf1o.c C=fF|˙˙Lf=Lf
15 lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
16 lcflo.k φKHLWH
17 lcfrlem8.x φXV0˙
18 sneq x=Xx=X
19 18 fveq2d x=X˙x=˙X
20 oveq2 x=Xk·˙x=k·˙X
21 20 oveq2d x=Xw+˙k·˙x=w+˙k·˙X
22 21 eqeq2d x=Xv=w+˙k·˙xv=w+˙k·˙X
23 19 22 rexeqbidv x=Xw˙xv=w+˙k·˙xw˙Xv=w+˙k·˙X
24 23 riotabidv x=XιkR|w˙xv=w+˙k·˙x=ιkR|w˙Xv=w+˙k·˙X
25 24 mpteq2dv x=XvVιkR|w˙xv=w+˙k·˙x=vVιkR|w˙Xv=w+˙k·˙X
26 25 15 4 mptfvmpt XV0˙JX=vVιkR|w˙Xv=w+˙k·˙X
27 17 26 syl φJX=vVιkR|w˙Xv=w+˙k·˙X