Metamath Proof Explorer


Theorem lcfrlem8

Description: Lemma for lcf1o and lcfr . (Contributed by NM, 21-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H = LHyp K
lcf1o.o ˙ = ocH K W
lcf1o.u U = DVecH K W
lcf1o.v V = Base U
lcf1o.a + ˙ = + U
lcf1o.t · ˙ = U
lcf1o.s S = Scalar U
lcf1o.r R = Base S
lcf1o.z 0 ˙ = 0 U
lcf1o.f F = LFnl U
lcf1o.l L = LKer U
lcf1o.d D = LDual U
lcf1o.q Q = 0 D
lcf1o.c C = f F | ˙ ˙ L f = L f
lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcflo.k φ K HL W H
lcfrlem8.x φ X V 0 ˙
Assertion lcfrlem8 φ J X = v V ι k R | w ˙ X v = w + ˙ k · ˙ X

Proof

Step Hyp Ref Expression
1 lcf1o.h H = LHyp K
2 lcf1o.o ˙ = ocH K W
3 lcf1o.u U = DVecH K W
4 lcf1o.v V = Base U
5 lcf1o.a + ˙ = + U
6 lcf1o.t · ˙ = U
7 lcf1o.s S = Scalar U
8 lcf1o.r R = Base S
9 lcf1o.z 0 ˙ = 0 U
10 lcf1o.f F = LFnl U
11 lcf1o.l L = LKer U
12 lcf1o.d D = LDual U
13 lcf1o.q Q = 0 D
14 lcf1o.c C = f F | ˙ ˙ L f = L f
15 lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
16 lcflo.k φ K HL W H
17 lcfrlem8.x φ X V 0 ˙
18 sneq x = X x = X
19 18 fveq2d x = X ˙ x = ˙ X
20 oveq2 x = X k · ˙ x = k · ˙ X
21 20 oveq2d x = X w + ˙ k · ˙ x = w + ˙ k · ˙ X
22 21 eqeq2d x = X v = w + ˙ k · ˙ x v = w + ˙ k · ˙ X
23 19 22 rexeqbidv x = X w ˙ x v = w + ˙ k · ˙ x w ˙ X v = w + ˙ k · ˙ X
24 23 riotabidv x = X ι k R | w ˙ x v = w + ˙ k · ˙ x = ι k R | w ˙ X v = w + ˙ k · ˙ X
25 24 mpteq2dv x = X v V ι k R | w ˙ x v = w + ˙ k · ˙ x = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
26 25 15 4 mptfvmpt X V 0 ˙ J X = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
27 17 26 syl φ J X = v V ι k R | w ˙ X v = w + ˙ k · ˙ X