| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
|
| 2 |
|
lcf1o.o |
|
| 3 |
|
lcf1o.u |
|
| 4 |
|
lcf1o.v |
|
| 5 |
|
lcf1o.a |
|
| 6 |
|
lcf1o.t |
|
| 7 |
|
lcf1o.s |
|
| 8 |
|
lcf1o.r |
|
| 9 |
|
lcf1o.z |
|
| 10 |
|
lcf1o.f |
|
| 11 |
|
lcf1o.l |
|
| 12 |
|
lcf1o.d |
|
| 13 |
|
lcf1o.q |
|
| 14 |
|
lcf1o.c |
|
| 15 |
|
lcf1o.j |
|
| 16 |
|
lcflo.k |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
18
|
cbvrexvw |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
rexbidv |
|
| 24 |
19 23
|
bitrid |
|
| 25 |
24
|
cbvriotavw |
|
| 26 |
|
eqeq1 |
|
| 27 |
26
|
rexbidv |
|
| 28 |
27
|
riotabidv |
|
| 29 |
25 28
|
eqtrid |
|
| 30 |
29
|
cbvmptv |
|
| 31 |
|
sneq |
|
| 32 |
31
|
fveq2d |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
32 35
|
rexeqbidv |
|
| 37 |
36
|
riotabidv |
|
| 38 |
37
|
mpteq2dv |
|
| 39 |
30 38
|
eqtrid |
|
| 40 |
39
|
cbvmptv |
|
| 41 |
15 40
|
eqtri |
|
| 42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16
|
lcfrlem9 |
|