Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
|
2 |
|
lcf1o.o |
|
3 |
|
lcf1o.u |
|
4 |
|
lcf1o.v |
|
5 |
|
lcf1o.a |
|
6 |
|
lcf1o.t |
|
7 |
|
lcf1o.s |
|
8 |
|
lcf1o.r |
|
9 |
|
lcf1o.z |
|
10 |
|
lcf1o.f |
|
11 |
|
lcf1o.l |
|
12 |
|
lcf1o.d |
|
13 |
|
lcf1o.q |
|
14 |
|
lcf1o.c |
|
15 |
|
lcf1o.j |
|
16 |
|
lcflo.k |
|
17 |
|
oveq1 |
|
18 |
17
|
eqeq2d |
|
19 |
18
|
cbvrexvw |
|
20 |
|
oveq1 |
|
21 |
20
|
oveq2d |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
rexbidv |
|
24 |
19 23
|
syl5bb |
|
25 |
24
|
cbvriotavw |
|
26 |
|
eqeq1 |
|
27 |
26
|
rexbidv |
|
28 |
27
|
riotabidv |
|
29 |
25 28
|
syl5eq |
|
30 |
29
|
cbvmptv |
|
31 |
|
sneq |
|
32 |
31
|
fveq2d |
|
33 |
|
oveq2 |
|
34 |
33
|
oveq2d |
|
35 |
34
|
eqeq2d |
|
36 |
32 35
|
rexeqbidv |
|
37 |
36
|
riotabidv |
|
38 |
37
|
mpteq2dv |
|
39 |
30 38
|
syl5eq |
|
40 |
39
|
cbvmptv |
|
41 |
15 40
|
eqtri |
|
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16
|
lcfrlem9 |
|