Metamath Proof Explorer


Theorem lcf1o

Description: Define a function J that provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H = LHyp K
lcf1o.o ˙ = ocH K W
lcf1o.u U = DVecH K W
lcf1o.v V = Base U
lcf1o.a + ˙ = + U
lcf1o.t · ˙ = U
lcf1o.s S = Scalar U
lcf1o.r R = Base S
lcf1o.z 0 ˙ = 0 U
lcf1o.f F = LFnl U
lcf1o.l L = LKer U
lcf1o.d D = LDual U
lcf1o.q Q = 0 D
lcf1o.c C = f F | ˙ ˙ L f = L f
lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcflo.k φ K HL W H
Assertion lcf1o φ J : V 0 ˙ 1-1 onto C Q

Proof

Step Hyp Ref Expression
1 lcf1o.h H = LHyp K
2 lcf1o.o ˙ = ocH K W
3 lcf1o.u U = DVecH K W
4 lcf1o.v V = Base U
5 lcf1o.a + ˙ = + U
6 lcf1o.t · ˙ = U
7 lcf1o.s S = Scalar U
8 lcf1o.r R = Base S
9 lcf1o.z 0 ˙ = 0 U
10 lcf1o.f F = LFnl U
11 lcf1o.l L = LKer U
12 lcf1o.d D = LDual U
13 lcf1o.q Q = 0 D
14 lcf1o.c C = f F | ˙ ˙ L f = L f
15 lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
16 lcflo.k φ K HL W H
17 oveq1 w = z w + ˙ k · ˙ x = z + ˙ k · ˙ x
18 17 eqeq2d w = z v = w + ˙ k · ˙ x v = z + ˙ k · ˙ x
19 18 cbvrexvw w ˙ x v = w + ˙ k · ˙ x z ˙ x v = z + ˙ k · ˙ x
20 oveq1 k = l k · ˙ x = l · ˙ x
21 20 oveq2d k = l z + ˙ k · ˙ x = z + ˙ l · ˙ x
22 21 eqeq2d k = l v = z + ˙ k · ˙ x v = z + ˙ l · ˙ x
23 22 rexbidv k = l z ˙ x v = z + ˙ k · ˙ x z ˙ x v = z + ˙ l · ˙ x
24 19 23 syl5bb k = l w ˙ x v = w + ˙ k · ˙ x z ˙ x v = z + ˙ l · ˙ x
25 24 cbvriotavw ι k R | w ˙ x v = w + ˙ k · ˙ x = ι l R | z ˙ x v = z + ˙ l · ˙ x
26 eqeq1 v = u v = z + ˙ l · ˙ x u = z + ˙ l · ˙ x
27 26 rexbidv v = u z ˙ x v = z + ˙ l · ˙ x z ˙ x u = z + ˙ l · ˙ x
28 27 riotabidv v = u ι l R | z ˙ x v = z + ˙ l · ˙ x = ι l R | z ˙ x u = z + ˙ l · ˙ x
29 25 28 syl5eq v = u ι k R | w ˙ x v = w + ˙ k · ˙ x = ι l R | z ˙ x u = z + ˙ l · ˙ x
30 29 cbvmptv v V ι k R | w ˙ x v = w + ˙ k · ˙ x = u V ι l R | z ˙ x u = z + ˙ l · ˙ x
31 sneq x = y x = y
32 31 fveq2d x = y ˙ x = ˙ y
33 oveq2 x = y l · ˙ x = l · ˙ y
34 33 oveq2d x = y z + ˙ l · ˙ x = z + ˙ l · ˙ y
35 34 eqeq2d x = y u = z + ˙ l · ˙ x u = z + ˙ l · ˙ y
36 32 35 rexeqbidv x = y z ˙ x u = z + ˙ l · ˙ x z ˙ y u = z + ˙ l · ˙ y
37 36 riotabidv x = y ι l R | z ˙ x u = z + ˙ l · ˙ x = ι l R | z ˙ y u = z + ˙ l · ˙ y
38 37 mpteq2dv x = y u V ι l R | z ˙ x u = z + ˙ l · ˙ x = u V ι l R | z ˙ y u = z + ˙ l · ˙ y
39 30 38 syl5eq x = y v V ι k R | w ˙ x v = w + ˙ k · ˙ x = u V ι l R | z ˙ y u = z + ˙ l · ˙ y
40 39 cbvmptv x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x = y V 0 ˙ u V ι l R | z ˙ y u = z + ˙ l · ˙ y
41 15 40 eqtri J = y V 0 ˙ u V ι l R | z ˙ y u = z + ˙ l · ˙ y
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16 lcfrlem9 φ J : V 0 ˙ 1-1 onto C Q