Metamath Proof Explorer


Theorem lcfrlem10

Description: Lemma for lcfr . (Contributed by NM, 23-Feb-2015)

Ref Expression
Hypotheses lcf1o.h H=LHypK
lcf1o.o ˙=ocHKW
lcf1o.u U=DVecHKW
lcf1o.v V=BaseU
lcf1o.a +˙=+U
lcf1o.t ·˙=U
lcf1o.s S=ScalarU
lcf1o.r R=BaseS
lcf1o.z 0˙=0U
lcf1o.f F=LFnlU
lcf1o.l L=LKerU
lcf1o.d D=LDualU
lcf1o.q Q=0D
lcf1o.c C=fF|˙˙Lf=Lf
lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcflo.k φKHLWH
lcfrlem10.x φXV0˙
Assertion lcfrlem10 φJXF

Proof

Step Hyp Ref Expression
1 lcf1o.h H=LHypK
2 lcf1o.o ˙=ocHKW
3 lcf1o.u U=DVecHKW
4 lcf1o.v V=BaseU
5 lcf1o.a +˙=+U
6 lcf1o.t ·˙=U
7 lcf1o.s S=ScalarU
8 lcf1o.r R=BaseS
9 lcf1o.z 0˙=0U
10 lcf1o.f F=LFnlU
11 lcf1o.l L=LKerU
12 lcf1o.d D=LDualU
13 lcf1o.q Q=0D
14 lcf1o.c C=fF|˙˙Lf=Lf
15 lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
16 lcflo.k φKHLWH
17 lcfrlem10.x φXV0˙
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lcfrlem8 φJX=vVιkR|w˙Xv=w+˙k·˙X
19 eqid vVιkR|w˙Xv=w+˙k·˙X=vVιkR|w˙Xv=w+˙k·˙X
20 1 2 3 4 9 5 6 10 7 8 19 16 17 dochflcl φvVιkR|w˙Xv=w+˙k·˙XF
21 18 20 eqeltrd φJXF