Metamath Proof Explorer


Theorem lcf1o

Description: Define a function J that provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h
|- H = ( LHyp ` K )
lcf1o.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcf1o.u
|- U = ( ( DVecH ` K ) ` W )
lcf1o.v
|- V = ( Base ` U )
lcf1o.a
|- .+ = ( +g ` U )
lcf1o.t
|- .x. = ( .s ` U )
lcf1o.s
|- S = ( Scalar ` U )
lcf1o.r
|- R = ( Base ` S )
lcf1o.z
|- .0. = ( 0g ` U )
lcf1o.f
|- F = ( LFnl ` U )
lcf1o.l
|- L = ( LKer ` U )
lcf1o.d
|- D = ( LDual ` U )
lcf1o.q
|- Q = ( 0g ` D )
lcf1o.c
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcf1o.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcflo.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcf1o
|- ( ph -> J : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )

Proof

Step Hyp Ref Expression
1 lcf1o.h
 |-  H = ( LHyp ` K )
2 lcf1o.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcf1o.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcf1o.v
 |-  V = ( Base ` U )
5 lcf1o.a
 |-  .+ = ( +g ` U )
6 lcf1o.t
 |-  .x. = ( .s ` U )
7 lcf1o.s
 |-  S = ( Scalar ` U )
8 lcf1o.r
 |-  R = ( Base ` S )
9 lcf1o.z
 |-  .0. = ( 0g ` U )
10 lcf1o.f
 |-  F = ( LFnl ` U )
11 lcf1o.l
 |-  L = ( LKer ` U )
12 lcf1o.d
 |-  D = ( LDual ` U )
13 lcf1o.q
 |-  Q = ( 0g ` D )
14 lcf1o.c
 |-  C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
15 lcf1o.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
16 lcflo.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 oveq1
 |-  ( w = z -> ( w .+ ( k .x. x ) ) = ( z .+ ( k .x. x ) ) )
18 17 eqeq2d
 |-  ( w = z -> ( v = ( w .+ ( k .x. x ) ) <-> v = ( z .+ ( k .x. x ) ) ) )
19 18 cbvrexvw
 |-  ( E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) <-> E. z e. ( ._|_ ` { x } ) v = ( z .+ ( k .x. x ) ) )
20 oveq1
 |-  ( k = l -> ( k .x. x ) = ( l .x. x ) )
21 20 oveq2d
 |-  ( k = l -> ( z .+ ( k .x. x ) ) = ( z .+ ( l .x. x ) ) )
22 21 eqeq2d
 |-  ( k = l -> ( v = ( z .+ ( k .x. x ) ) <-> v = ( z .+ ( l .x. x ) ) ) )
23 22 rexbidv
 |-  ( k = l -> ( E. z e. ( ._|_ ` { x } ) v = ( z .+ ( k .x. x ) ) <-> E. z e. ( ._|_ ` { x } ) v = ( z .+ ( l .x. x ) ) ) )
24 19 23 syl5bb
 |-  ( k = l -> ( E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) <-> E. z e. ( ._|_ ` { x } ) v = ( z .+ ( l .x. x ) ) ) )
25 24 cbvriotavw
 |-  ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) = ( iota_ l e. R E. z e. ( ._|_ ` { x } ) v = ( z .+ ( l .x. x ) ) )
26 eqeq1
 |-  ( v = u -> ( v = ( z .+ ( l .x. x ) ) <-> u = ( z .+ ( l .x. x ) ) ) )
27 26 rexbidv
 |-  ( v = u -> ( E. z e. ( ._|_ ` { x } ) v = ( z .+ ( l .x. x ) ) <-> E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) )
28 27 riotabidv
 |-  ( v = u -> ( iota_ l e. R E. z e. ( ._|_ ` { x } ) v = ( z .+ ( l .x. x ) ) ) = ( iota_ l e. R E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) )
29 25 28 eqtrid
 |-  ( v = u -> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) = ( iota_ l e. R E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) )
30 29 cbvmptv
 |-  ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) = ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) )
31 sneq
 |-  ( x = y -> { x } = { y } )
32 31 fveq2d
 |-  ( x = y -> ( ._|_ ` { x } ) = ( ._|_ ` { y } ) )
33 oveq2
 |-  ( x = y -> ( l .x. x ) = ( l .x. y ) )
34 33 oveq2d
 |-  ( x = y -> ( z .+ ( l .x. x ) ) = ( z .+ ( l .x. y ) ) )
35 34 eqeq2d
 |-  ( x = y -> ( u = ( z .+ ( l .x. x ) ) <-> u = ( z .+ ( l .x. y ) ) ) )
36 32 35 rexeqbidv
 |-  ( x = y -> ( E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) <-> E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) )
37 36 riotabidv
 |-  ( x = y -> ( iota_ l e. R E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) = ( iota_ l e. R E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) )
38 37 mpteq2dv
 |-  ( x = y -> ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { x } ) u = ( z .+ ( l .x. x ) ) ) ) = ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) ) )
39 30 38 eqtrid
 |-  ( x = y -> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) = ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) ) )
40 39 cbvmptv
 |-  ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) = ( y e. ( V \ { .0. } ) |-> ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) ) )
41 15 40 eqtri
 |-  J = ( y e. ( V \ { .0. } ) |-> ( u e. V |-> ( iota_ l e. R E. z e. ( ._|_ ` { y } ) u = ( z .+ ( l .x. y ) ) ) ) )
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16 lcfrlem9
 |-  ( ph -> J : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )