Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcf1o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcf1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcf1o.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcf1o.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
lcf1o.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
8 |
|
lcf1o.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
9 |
|
lcf1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
10 |
|
lcf1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lcf1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
12 |
|
lcf1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
13 |
|
lcf1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
14 |
|
lcf1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
15 |
|
lcf1o.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
16 |
|
lcflo.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 + ( 𝑘 · 𝑥 ) ) = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ) ) |
19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 · 𝑥 ) = ( 𝑙 · 𝑥 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑧 + ( 𝑘 · 𝑥 ) ) = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ↔ 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑘 = 𝑙 → ( ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
24 |
19 23
|
syl5bb |
⊢ ( 𝑘 = 𝑙 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
25 |
24
|
cbvriotavw |
⊢ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) = ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑣 = 𝑢 → ( ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
28 |
27
|
riotabidv |
⊢ ( 𝑣 = 𝑢 → ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) = ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
29 |
25 28
|
syl5eq |
⊢ ( 𝑣 = 𝑢 → ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) = ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
30 |
29
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) |
31 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
32 |
31
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⊥ ‘ { 𝑥 } ) = ( ⊥ ‘ { 𝑦 } ) ) |
33 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑙 · 𝑥 ) = ( 𝑙 · 𝑦 ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 + ( 𝑙 · 𝑥 ) ) = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) |
36 |
32 35
|
rexeqbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) |
37 |
36
|
riotabidv |
⊢ ( 𝑥 = 𝑦 → ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) = ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) |
38 |
37
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) ) |
39 |
30 38
|
syl5eq |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) ) |
40 |
39
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) ) |
41 |
15 40
|
eqtri |
⊢ 𝐽 = ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑢 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝑅 ∃ 𝑧 ∈ ( ⊥ ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16
|
lcfrlem9 |
⊢ ( 𝜑 → 𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) |