Metamath Proof Explorer


Theorem lcf1o

Description: Define a function J that provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
lcf1o.a + = ( +g𝑈 )
lcf1o.t · = ( ·𝑠𝑈 )
lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
lcf1o.z 0 = ( 0g𝑈 )
lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
lcf1o.q 𝑄 = ( 0g𝐷 )
lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcf1o ( 𝜑𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
5 lcf1o.a + = ( +g𝑈 )
6 lcf1o.t · = ( ·𝑠𝑈 )
7 lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
8 lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
9 lcf1o.z 0 = ( 0g𝑈 )
10 lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
11 lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
12 lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
13 lcf1o.q 𝑄 = ( 0g𝐷 )
14 lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
15 lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
16 lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 oveq1 ( 𝑤 = 𝑧 → ( 𝑤 + ( 𝑘 · 𝑥 ) ) = ( 𝑧 + ( 𝑘 · 𝑥 ) ) )
18 17 eqeq2d ( 𝑤 = 𝑧 → ( 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ) )
19 18 cbvrexvw ( ∃ 𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) )
20 oveq1 ( 𝑘 = 𝑙 → ( 𝑘 · 𝑥 ) = ( 𝑙 · 𝑥 ) )
21 20 oveq2d ( 𝑘 = 𝑙 → ( 𝑧 + ( 𝑘 · 𝑥 ) ) = ( 𝑧 + ( 𝑙 · 𝑥 ) ) )
22 21 eqeq2d ( 𝑘 = 𝑙 → ( 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ↔ 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
23 22 rexbidv ( 𝑘 = 𝑙 → ( ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
24 19 23 syl5bb ( 𝑘 = 𝑙 → ( ∃ 𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
25 24 cbvriotavw ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) = ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) )
26 eqeq1 ( 𝑣 = 𝑢 → ( 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
27 26 rexbidv ( 𝑣 = 𝑢 → ( ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
28 27 riotabidv ( 𝑣 = 𝑢 → ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) = ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
29 25 28 syl5eq ( 𝑣 = 𝑢 → ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) = ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
30 29 cbvmptv ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) = ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) )
31 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
32 31 fveq2d ( 𝑥 = 𝑦 → ( ‘ { 𝑥 } ) = ( ‘ { 𝑦 } ) )
33 oveq2 ( 𝑥 = 𝑦 → ( 𝑙 · 𝑥 ) = ( 𝑙 · 𝑦 ) )
34 33 oveq2d ( 𝑥 = 𝑦 → ( 𝑧 + ( 𝑙 · 𝑥 ) ) = ( 𝑧 + ( 𝑙 · 𝑦 ) ) )
35 34 eqeq2d ( 𝑥 = 𝑦 → ( 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) )
36 32 35 rexeqbidv ( 𝑥 = 𝑦 → ( ∃ 𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ↔ ∃ 𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) )
37 36 riotabidv ( 𝑥 = 𝑦 → ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) = ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) )
38 37 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑥 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑥 ) ) ) ) = ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) )
39 30 38 syl5eq ( 𝑥 = 𝑦 → ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) = ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) )
40 39 cbvmptv ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) )
41 15 40 eqtri 𝐽 = ( 𝑦 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑢𝑉 ↦ ( 𝑙𝑅𝑧 ∈ ( ‘ { 𝑦 } ) 𝑢 = ( 𝑧 + ( 𝑙 · 𝑦 ) ) ) ) )
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 41 16 lcfrlem9 ( 𝜑𝐽 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )