Metamath Proof Explorer


Theorem lcfrlem4

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem4.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem4.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem4.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem4.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem4.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem4.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem4.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem4.g ( 𝜑𝐺𝑄 )
lcfrlem4.x ( 𝜑𝑋𝐸 )
Assertion lcfrlem4 ( 𝜑𝑋𝑉 )

Proof

Step Hyp Ref Expression
1 lcfrlem4.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem4.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem4.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem4.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem4.l 𝐿 = ( LKer ‘ 𝑈 )
6 lcfrlem4.d 𝐷 = ( LDual ‘ 𝑈 )
7 lcfrlem4.q 𝑄 = ( LSubSp ‘ 𝐷 )
8 lcfrlem4.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
9 lcfrlem4.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem4.g ( 𝜑𝐺𝑄 )
11 lcfrlem4.x ( 𝜑𝑋𝐸 )
12 9 adantr ( ( 𝜑𝑔𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
14 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 14 adantr ( ( 𝜑𝑔𝐺 ) → 𝑈 ∈ LMod )
16 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
17 16 7 lssel ( ( 𝐺𝑄𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
18 10 17 sylan ( ( 𝜑𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
19 13 6 16 14 ldualvbase ( 𝜑 → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) )
20 19 adantr ( ( 𝜑𝑔𝐺 ) → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) )
21 18 20 eleqtrd ( ( 𝜑𝑔𝐺 ) → 𝑔 ∈ ( LFnl ‘ 𝑈 ) )
22 4 13 5 15 21 lkrssv ( ( 𝜑𝑔𝐺 ) → ( 𝐿𝑔 ) ⊆ 𝑉 )
23 1 3 4 2 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿𝑔 ) ⊆ 𝑉 ) → ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
24 12 22 23 syl2anc ( ( 𝜑𝑔𝐺 ) → ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
25 24 ralrimiva ( 𝜑 → ∀ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
26 iunss ( 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 ↔ ∀ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
27 25 26 sylibr ( 𝜑 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
28 11 8 eleqtrdi ( 𝜑𝑋 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) )
29 27 28 sseldd ( 𝜑𝑋𝑉 )