Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem4.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem4.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem4.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
6 |
|
lcfrlem4.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
7 |
|
lcfrlem4.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
8 |
|
lcfrlem4.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
9 |
|
lcfrlem4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem4.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
11 |
|
lcfrlem4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
14 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑈 ∈ LMod ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
17 |
16 7
|
lssel |
⊢ ( ( 𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
18 |
10 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
19 |
13 6 16 14
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( Base ‘ 𝐷 ) = ( LFnl ‘ 𝑈 ) ) |
21 |
18 20
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( LFnl ‘ 𝑈 ) ) |
22 |
4 13 5 15 21
|
lkrssv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) |
23 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
24 |
12 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
26 |
|
iunss |
⊢ ( ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ↔ ∀ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
28 |
11 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
29 |
27 28
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |