Metamath Proof Explorer


Theorem lcfrlem4

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem4.h H=LHypK
lcfrlem4.o ˙=ocHKW
lcfrlem4.u U=DVecHKW
lcfrlem4.v V=BaseU
lcfrlem4.l L=LKerU
lcfrlem4.d D=LDualU
lcfrlem4.q Q=LSubSpD
lcfrlem4.e E=gG˙Lg
lcfrlem4.k φKHLWH
lcfrlem4.g φGQ
lcfrlem4.x φXE
Assertion lcfrlem4 φXV

Proof

Step Hyp Ref Expression
1 lcfrlem4.h H=LHypK
2 lcfrlem4.o ˙=ocHKW
3 lcfrlem4.u U=DVecHKW
4 lcfrlem4.v V=BaseU
5 lcfrlem4.l L=LKerU
6 lcfrlem4.d D=LDualU
7 lcfrlem4.q Q=LSubSpD
8 lcfrlem4.e E=gG˙Lg
9 lcfrlem4.k φKHLWH
10 lcfrlem4.g φGQ
11 lcfrlem4.x φXE
12 9 adantr φgGKHLWH
13 eqid LFnlU=LFnlU
14 1 3 9 dvhlmod φULMod
15 14 adantr φgGULMod
16 eqid BaseD=BaseD
17 16 7 lssel GQgGgBaseD
18 10 17 sylan φgGgBaseD
19 13 6 16 14 ldualvbase φBaseD=LFnlU
20 19 adantr φgGBaseD=LFnlU
21 18 20 eleqtrd φgGgLFnlU
22 4 13 5 15 21 lkrssv φgGLgV
23 1 3 4 2 dochssv KHLWHLgV˙LgV
24 12 22 23 syl2anc φgG˙LgV
25 24 ralrimiva φgG˙LgV
26 iunss gG˙LgVgG˙LgV
27 25 26 sylibr φgG˙LgV
28 11 8 eleqtrdi φXgG˙Lg
29 27 28 sseldd φXV