Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem4.h | |
|
lcfrlem4.o | |
||
lcfrlem4.u | |
||
lcfrlem4.v | |
||
lcfrlem4.l | |
||
lcfrlem4.d | |
||
lcfrlem4.q | |
||
lcfrlem4.e | |
||
lcfrlem4.k | |
||
lcfrlem4.g | |
||
lcfrlem4.x | |
||
Assertion | lcfrlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem4.h | |
|
2 | lcfrlem4.o | |
|
3 | lcfrlem4.u | |
|
4 | lcfrlem4.v | |
|
5 | lcfrlem4.l | |
|
6 | lcfrlem4.d | |
|
7 | lcfrlem4.q | |
|
8 | lcfrlem4.e | |
|
9 | lcfrlem4.k | |
|
10 | lcfrlem4.g | |
|
11 | lcfrlem4.x | |
|
12 | 9 | adantr | |
13 | eqid | |
|
14 | 1 3 9 | dvhlmod | |
15 | 14 | adantr | |
16 | eqid | |
|
17 | 16 7 | lssel | |
18 | 10 17 | sylan | |
19 | 13 6 16 14 | ldualvbase | |
20 | 19 | adantr | |
21 | 18 20 | eleqtrd | |
22 | 4 13 5 15 21 | lkrssv | |
23 | 1 3 4 2 | dochssv | |
24 | 12 22 23 | syl2anc | |
25 | 24 | ralrimiva | |
26 | iunss | |
|
27 | 25 26 | sylibr | |
28 | 11 8 | eleqtrdi | |
29 | 27 28 | sseldd | |