Metamath Proof Explorer


Theorem lcfrlem4

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem4.h H = LHyp K
lcfrlem4.o ˙ = ocH K W
lcfrlem4.u U = DVecH K W
lcfrlem4.v V = Base U
lcfrlem4.l L = LKer U
lcfrlem4.d D = LDual U
lcfrlem4.q Q = LSubSp D
lcfrlem4.e E = g G ˙ L g
lcfrlem4.k φ K HL W H
lcfrlem4.g φ G Q
lcfrlem4.x φ X E
Assertion lcfrlem4 φ X V

Proof

Step Hyp Ref Expression
1 lcfrlem4.h H = LHyp K
2 lcfrlem4.o ˙ = ocH K W
3 lcfrlem4.u U = DVecH K W
4 lcfrlem4.v V = Base U
5 lcfrlem4.l L = LKer U
6 lcfrlem4.d D = LDual U
7 lcfrlem4.q Q = LSubSp D
8 lcfrlem4.e E = g G ˙ L g
9 lcfrlem4.k φ K HL W H
10 lcfrlem4.g φ G Q
11 lcfrlem4.x φ X E
12 9 adantr φ g G K HL W H
13 eqid LFnl U = LFnl U
14 1 3 9 dvhlmod φ U LMod
15 14 adantr φ g G U LMod
16 eqid Base D = Base D
17 16 7 lssel G Q g G g Base D
18 10 17 sylan φ g G g Base D
19 13 6 16 14 ldualvbase φ Base D = LFnl U
20 19 adantr φ g G Base D = LFnl U
21 18 20 eleqtrd φ g G g LFnl U
22 4 13 5 15 21 lkrssv φ g G L g V
23 1 3 4 2 dochssv K HL W H L g V ˙ L g V
24 12 22 23 syl2anc φ g G ˙ L g V
25 24 ralrimiva φ g G ˙ L g V
26 iunss g G ˙ L g V g G ˙ L g V
27 25 26 sylibr φ g G ˙ L g V
28 11 8 eleqtrdi φ X g G ˙ L g
29 27 28 sseldd φ X V