Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem4.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem4.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem4.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem4.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem4.l |
|- L = ( LKer ` U ) |
6 |
|
lcfrlem4.d |
|- D = ( LDual ` U ) |
7 |
|
lcfrlem4.q |
|- Q = ( LSubSp ` D ) |
8 |
|
lcfrlem4.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
9 |
|
lcfrlem4.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem4.g |
|- ( ph -> G e. Q ) |
11 |
|
lcfrlem4.x |
|- ( ph -> X e. E ) |
12 |
9
|
adantr |
|- ( ( ph /\ g e. G ) -> ( K e. HL /\ W e. H ) ) |
13 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
14 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
15 |
14
|
adantr |
|- ( ( ph /\ g e. G ) -> U e. LMod ) |
16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
17 |
16 7
|
lssel |
|- ( ( G e. Q /\ g e. G ) -> g e. ( Base ` D ) ) |
18 |
10 17
|
sylan |
|- ( ( ph /\ g e. G ) -> g e. ( Base ` D ) ) |
19 |
13 6 16 14
|
ldualvbase |
|- ( ph -> ( Base ` D ) = ( LFnl ` U ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ g e. G ) -> ( Base ` D ) = ( LFnl ` U ) ) |
21 |
18 20
|
eleqtrd |
|- ( ( ph /\ g e. G ) -> g e. ( LFnl ` U ) ) |
22 |
4 13 5 15 21
|
lkrssv |
|- ( ( ph /\ g e. G ) -> ( L ` g ) C_ V ) |
23 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` g ) C_ V ) -> ( ._|_ ` ( L ` g ) ) C_ V ) |
24 |
12 22 23
|
syl2anc |
|- ( ( ph /\ g e. G ) -> ( ._|_ ` ( L ` g ) ) C_ V ) |
25 |
24
|
ralrimiva |
|- ( ph -> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
26 |
|
iunss |
|- ( U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V <-> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
27 |
25 26
|
sylibr |
|- ( ph -> U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
28 |
11 8
|
eleqtrdi |
|- ( ph -> X e. U_ g e. G ( ._|_ ` ( L ` g ) ) ) |
29 |
27 28
|
sseldd |
|- ( ph -> X e. V ) |