Metamath Proof Explorer


Theorem lcfrlem4

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem4.h
|- H = ( LHyp ` K )
lcfrlem4.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem4.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem4.v
|- V = ( Base ` U )
lcfrlem4.l
|- L = ( LKer ` U )
lcfrlem4.d
|- D = ( LDual ` U )
lcfrlem4.q
|- Q = ( LSubSp ` D )
lcfrlem4.e
|- E = U_ g e. G ( ._|_ ` ( L ` g ) )
lcfrlem4.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem4.g
|- ( ph -> G e. Q )
lcfrlem4.x
|- ( ph -> X e. E )
Assertion lcfrlem4
|- ( ph -> X e. V )

Proof

Step Hyp Ref Expression
1 lcfrlem4.h
 |-  H = ( LHyp ` K )
2 lcfrlem4.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem4.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem4.v
 |-  V = ( Base ` U )
5 lcfrlem4.l
 |-  L = ( LKer ` U )
6 lcfrlem4.d
 |-  D = ( LDual ` U )
7 lcfrlem4.q
 |-  Q = ( LSubSp ` D )
8 lcfrlem4.e
 |-  E = U_ g e. G ( ._|_ ` ( L ` g ) )
9 lcfrlem4.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem4.g
 |-  ( ph -> G e. Q )
11 lcfrlem4.x
 |-  ( ph -> X e. E )
12 9 adantr
 |-  ( ( ph /\ g e. G ) -> ( K e. HL /\ W e. H ) )
13 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
14 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
15 14 adantr
 |-  ( ( ph /\ g e. G ) -> U e. LMod )
16 eqid
 |-  ( Base ` D ) = ( Base ` D )
17 16 7 lssel
 |-  ( ( G e. Q /\ g e. G ) -> g e. ( Base ` D ) )
18 10 17 sylan
 |-  ( ( ph /\ g e. G ) -> g e. ( Base ` D ) )
19 13 6 16 14 ldualvbase
 |-  ( ph -> ( Base ` D ) = ( LFnl ` U ) )
20 19 adantr
 |-  ( ( ph /\ g e. G ) -> ( Base ` D ) = ( LFnl ` U ) )
21 18 20 eleqtrd
 |-  ( ( ph /\ g e. G ) -> g e. ( LFnl ` U ) )
22 4 13 5 15 21 lkrssv
 |-  ( ( ph /\ g e. G ) -> ( L ` g ) C_ V )
23 1 3 4 2 dochssv
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` g ) C_ V ) -> ( ._|_ ` ( L ` g ) ) C_ V )
24 12 22 23 syl2anc
 |-  ( ( ph /\ g e. G ) -> ( ._|_ ` ( L ` g ) ) C_ V )
25 24 ralrimiva
 |-  ( ph -> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V )
26 iunss
 |-  ( U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V <-> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V )
27 25 26 sylibr
 |-  ( ph -> U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V )
28 11 8 eleqtrdi
 |-  ( ph -> X e. U_ g e. G ( ._|_ ` ( L ` g ) ) )
29 27 28 sseldd
 |-  ( ph -> X e. V )