Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem5.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem5.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem5.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfrlem5.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfrlem5.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem5.s |
⊢ 𝑆 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfrlem5.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem5.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
11 |
|
lcfrlem5.q |
⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) |
12 |
|
lcfrlem5.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑄 ) |
13 |
|
lcfrlem5.c |
⊢ 𝐶 = ( Scalar ‘ 𝑈 ) |
14 |
|
lcfrlem5.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
15 |
|
lcfrlem5.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
16 |
|
lcfrlem5.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
17 |
12 11
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
18 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ 𝑅 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑅 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
20 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → 𝑈 ∈ LMod ) |
22 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
24 |
23 8
|
lssss |
⊢ ( 𝑅 ∈ 𝑆 → 𝑅 ⊆ ( Base ‘ 𝐷 ) ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝐷 ) ) |
26 |
5 7 23 20
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
27 |
25 26
|
sseqtrd |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐹 ) |
28 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) → 𝑓 ∈ 𝐹 ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → 𝑓 ∈ 𝐹 ) |
30 |
4 5 6 21 29
|
lkrssv |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( 𝐿 ‘ 𝑓 ) ⊆ 𝑉 ) |
31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
32 |
1 3 4 31 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝑓 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
33 |
22 30 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → 𝐴 ∈ 𝐵 ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
36 |
13 15 14 31
|
lssvscl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) → ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
37 |
21 33 34 35 36
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
38 |
37
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑅 ) → ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) → ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
39 |
38
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝑅 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) → ∃ 𝑓 ∈ 𝑅 ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
40 |
19 39
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑅 ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
41 |
|
eliun |
⊢ ( ( 𝐴 · 𝑋 ) ∈ ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ 𝑅 ( 𝐴 · 𝑋 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
42 |
40 41
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
43 |
42 11
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑄 ) |