Metamath Proof Explorer


Theorem lcfrlem7

Description: Lemma for lcfr . Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem7.h
|- H = ( LHyp ` K )
lcfrlem7.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem7.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem7.p
|- .+ = ( +g ` U )
lcfrlem7.l
|- L = ( LKer ` U )
lcfrlem7.d
|- D = ( LDual ` U )
lcfrlem7.q
|- Q = ( LSubSp ` D )
lcfrlem7.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem7.g
|- ( ph -> G e. Q )
lcfrlem7.e
|- E = U_ g e. G ( ._|_ ` ( L ` g ) )
lcfrlem7.x
|- ( ph -> X e. E )
lcfrlem7.z
|- .0. = ( 0g ` U )
lcfrlem7.y
|- ( ph -> Y = .0. )
Assertion lcfrlem7
|- ( ph -> ( X .+ Y ) e. E )

Proof

Step Hyp Ref Expression
1 lcfrlem7.h
 |-  H = ( LHyp ` K )
2 lcfrlem7.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem7.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem7.p
 |-  .+ = ( +g ` U )
5 lcfrlem7.l
 |-  L = ( LKer ` U )
6 lcfrlem7.d
 |-  D = ( LDual ` U )
7 lcfrlem7.q
 |-  Q = ( LSubSp ` D )
8 lcfrlem7.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcfrlem7.g
 |-  ( ph -> G e. Q )
10 lcfrlem7.e
 |-  E = U_ g e. G ( ._|_ ` ( L ` g ) )
11 lcfrlem7.x
 |-  ( ph -> X e. E )
12 lcfrlem7.z
 |-  .0. = ( 0g ` U )
13 lcfrlem7.y
 |-  ( ph -> Y = .0. )
14 13 oveq2d
 |-  ( ph -> ( X .+ Y ) = ( X .+ .0. ) )
15 1 3 8 dvhlmod
 |-  ( ph -> U e. LMod )
16 eqid
 |-  ( Base ` U ) = ( Base ` U )
17 1 2 3 16 5 6 7 10 8 9 11 lcfrlem4
 |-  ( ph -> X e. ( Base ` U ) )
18 16 4 12 lmod0vrid
 |-  ( ( U e. LMod /\ X e. ( Base ` U ) ) -> ( X .+ .0. ) = X )
19 15 17 18 syl2anc
 |-  ( ph -> ( X .+ .0. ) = X )
20 14 19 eqtrd
 |-  ( ph -> ( X .+ Y ) = X )
21 20 11 eqeltrd
 |-  ( ph -> ( X .+ Y ) e. E )