Description: Lemma for lcfr . Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcfrlem7.h | |- H = ( LHyp ` K ) |
|
| lcfrlem7.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
| lcfrlem7.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| lcfrlem7.p | |- .+ = ( +g ` U ) |
||
| lcfrlem7.l | |- L = ( LKer ` U ) |
||
| lcfrlem7.d | |- D = ( LDual ` U ) |
||
| lcfrlem7.q | |- Q = ( LSubSp ` D ) |
||
| lcfrlem7.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| lcfrlem7.g | |- ( ph -> G e. Q ) |
||
| lcfrlem7.e | |- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
||
| lcfrlem7.x | |- ( ph -> X e. E ) |
||
| lcfrlem7.z | |- .0. = ( 0g ` U ) |
||
| lcfrlem7.y | |- ( ph -> Y = .0. ) |
||
| Assertion | lcfrlem7 | |- ( ph -> ( X .+ Y ) e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem7.h | |- H = ( LHyp ` K ) |
|
| 2 | lcfrlem7.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
| 3 | lcfrlem7.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 4 | lcfrlem7.p | |- .+ = ( +g ` U ) |
|
| 5 | lcfrlem7.l | |- L = ( LKer ` U ) |
|
| 6 | lcfrlem7.d | |- D = ( LDual ` U ) |
|
| 7 | lcfrlem7.q | |- Q = ( LSubSp ` D ) |
|
| 8 | lcfrlem7.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 9 | lcfrlem7.g | |- ( ph -> G e. Q ) |
|
| 10 | lcfrlem7.e | |- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
|
| 11 | lcfrlem7.x | |- ( ph -> X e. E ) |
|
| 12 | lcfrlem7.z | |- .0. = ( 0g ` U ) |
|
| 13 | lcfrlem7.y | |- ( ph -> Y = .0. ) |
|
| 14 | 13 | oveq2d | |- ( ph -> ( X .+ Y ) = ( X .+ .0. ) ) |
| 15 | 1 3 8 | dvhlmod | |- ( ph -> U e. LMod ) |
| 16 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 17 | 1 2 3 16 5 6 7 10 8 9 11 | lcfrlem4 | |- ( ph -> X e. ( Base ` U ) ) |
| 18 | 16 4 12 | lmod0vrid | |- ( ( U e. LMod /\ X e. ( Base ` U ) ) -> ( X .+ .0. ) = X ) |
| 19 | 15 17 18 | syl2anc | |- ( ph -> ( X .+ .0. ) = X ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( X .+ Y ) = X ) |
| 21 | 20 11 | eqeltrd | |- ( ph -> ( X .+ Y ) e. E ) |