Metamath Proof Explorer


Theorem lcfrlem7

Description: Lemma for lcfr . Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem7.h H = LHyp K
lcfrlem7.o ˙ = ocH K W
lcfrlem7.u U = DVecH K W
lcfrlem7.p + ˙ = + U
lcfrlem7.l L = LKer U
lcfrlem7.d D = LDual U
lcfrlem7.q Q = LSubSp D
lcfrlem7.k φ K HL W H
lcfrlem7.g φ G Q
lcfrlem7.e E = g G ˙ L g
lcfrlem7.x φ X E
lcfrlem7.z 0 ˙ = 0 U
lcfrlem7.y φ Y = 0 ˙
Assertion lcfrlem7 φ X + ˙ Y E

Proof

Step Hyp Ref Expression
1 lcfrlem7.h H = LHyp K
2 lcfrlem7.o ˙ = ocH K W
3 lcfrlem7.u U = DVecH K W
4 lcfrlem7.p + ˙ = + U
5 lcfrlem7.l L = LKer U
6 lcfrlem7.d D = LDual U
7 lcfrlem7.q Q = LSubSp D
8 lcfrlem7.k φ K HL W H
9 lcfrlem7.g φ G Q
10 lcfrlem7.e E = g G ˙ L g
11 lcfrlem7.x φ X E
12 lcfrlem7.z 0 ˙ = 0 U
13 lcfrlem7.y φ Y = 0 ˙
14 13 oveq2d φ X + ˙ Y = X + ˙ 0 ˙
15 1 3 8 dvhlmod φ U LMod
16 eqid Base U = Base U
17 1 2 3 16 5 6 7 10 8 9 11 lcfrlem4 φ X Base U
18 16 4 12 lmod0vrid U LMod X Base U X + ˙ 0 ˙ = X
19 15 17 18 syl2anc φ X + ˙ 0 ˙ = X
20 14 19 eqtrd φ X + ˙ Y = X
21 20 11 eqeltrd φ X + ˙ Y E