Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem38.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem38.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem38.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
lcfrlem38.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfrlem38.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfrlem38.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem38.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfrlem38.c |
⊢ 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
|
lcfrlem38.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
11 |
|
lcfrlem38.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lcfrlem38.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
13 |
|
lcfrlem38.gs |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
14 |
|
lcfrlem38.xe |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
15 |
|
lcfrlem38.ye |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
16 |
|
lcfrlem38.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
17 |
|
lcfrlem38.x |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
18 |
|
lcfrlem38.y |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
19 |
|
lcfrlem38.sp |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
20 |
|
lcfrlem38.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
21 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
22 |
1 3 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
24 |
1 2 3 23 6 7 8 10 11 12 14
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
25 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑈 ) ∧ 𝑋 ≠ 0 ) ) |
26 |
24 17 25
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ) |
27 |
1 2 3 23 6 7 8 10 11 12 15
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑈 ) ) |
28 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↔ ( 𝑌 ∈ ( Base ‘ 𝑈 ) ∧ 𝑌 ≠ 0 ) ) |
29 |
27 18 28
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ) |
30 |
1 2 3 23 4 16 19 21 11 26 29 20
|
lcfrlem21 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
31 |
16 21 22 30
|
lsateln0 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) 𝑖 ≠ 0 ) |
32 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝐺 ∈ 𝑄 ) |
34 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝐺 ⊆ 𝐶 ) |
35 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑋 ∈ 𝐸 ) |
36 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑌 ∈ 𝐸 ) |
37 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑋 ≠ 0 ) |
38 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑌 ≠ 0 ) |
39 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
40 |
|
eqid |
⊢ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
41 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → 𝑖 ≠ 0 ) |
43 |
1 2 3 4 5 6 7 8 9 10 32 33 34 35 36 16 37 38 19 39 40 41 42
|
lcfrlem39 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖 ≠ 0 ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
44 |
43
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) 𝑖 ≠ 0 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) ) |
45 |
31 44
|
mpd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |