Metamath Proof Explorer


Theorem lcfrlem40

Description: Lemma for lcfr . Eliminate B and I . (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.p + = ( +g𝑈 )
lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem38.g ( 𝜑𝐺𝑄 )
lcfrlem38.gs ( 𝜑𝐺𝐶 )
lcfrlem38.xe ( 𝜑𝑋𝐸 )
lcfrlem38.ye ( 𝜑𝑌𝐸 )
lcfrlem38.z 0 = ( 0g𝑈 )
lcfrlem38.x ( 𝜑𝑋0 )
lcfrlem38.y ( 𝜑𝑌0 )
lcfrlem38.sp 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem38.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
Assertion lcfrlem40 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem38.p + = ( +g𝑈 )
5 lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
9 lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
11 lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcfrlem38.g ( 𝜑𝐺𝑄 )
13 lcfrlem38.gs ( 𝜑𝐺𝐶 )
14 lcfrlem38.xe ( 𝜑𝑋𝐸 )
15 lcfrlem38.ye ( 𝜑𝑌𝐸 )
16 lcfrlem38.z 0 = ( 0g𝑈 )
17 lcfrlem38.x ( 𝜑𝑋0 )
18 lcfrlem38.y ( 𝜑𝑌0 )
19 lcfrlem38.sp 𝑁 = ( LSpan ‘ 𝑈 )
20 lcfrlem38.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
21 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
22 1 3 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
23 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
24 1 2 3 23 6 7 8 10 11 12 14 lcfrlem4 ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
25 eldifsn ( 𝑋 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑈 ) ∧ 𝑋0 ) )
26 24 17 25 sylanbrc ( 𝜑𝑋 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) )
27 1 2 3 23 6 7 8 10 11 12 15 lcfrlem4 ( 𝜑𝑌 ∈ ( Base ‘ 𝑈 ) )
28 eldifsn ( 𝑌 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↔ ( 𝑌 ∈ ( Base ‘ 𝑈 ) ∧ 𝑌0 ) )
29 27 18 28 sylanbrc ( 𝜑𝑌 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) )
30 1 2 3 23 4 16 19 21 11 26 29 20 lcfrlem21 ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( LSAtoms ‘ 𝑈 ) )
31 16 21 22 30 lsateln0 ( 𝜑 → ∃ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) 𝑖0 )
32 11 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 12 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝐺𝑄 )
34 13 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝐺𝐶 )
35 14 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑋𝐸 )
36 15 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑌𝐸 )
37 17 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑋0 )
38 18 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑌0 )
39 20 3ad2ant1 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
40 eqid ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
41 simp2 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) )
42 simp3 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → 𝑖0 )
43 1 2 3 4 5 6 7 8 9 10 32 33 34 35 36 16 37 38 19 39 40 41 42 lcfrlem39 ( ( 𝜑𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ 𝑖0 ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
44 43 rexlimdv3a ( 𝜑 → ( ∃ 𝑖 ∈ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) ) 𝑖0 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) )
45 31 44 mpd ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )