Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem38.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem38.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem38.p |
|- .+ = ( +g ` U ) |
5 |
|
lcfrlem38.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfrlem38.l |
|- L = ( LKer ` U ) |
7 |
|
lcfrlem38.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem38.q |
|- Q = ( LSubSp ` D ) |
9 |
|
lcfrlem38.c |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfrlem38.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfrlem38.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfrlem38.g |
|- ( ph -> G e. Q ) |
13 |
|
lcfrlem38.gs |
|- ( ph -> G C_ C ) |
14 |
|
lcfrlem38.xe |
|- ( ph -> X e. E ) |
15 |
|
lcfrlem38.ye |
|- ( ph -> Y e. E ) |
16 |
|
lcfrlem38.z |
|- .0. = ( 0g ` U ) |
17 |
|
lcfrlem38.x |
|- ( ph -> X =/= .0. ) |
18 |
|
lcfrlem38.y |
|- ( ph -> Y =/= .0. ) |
19 |
|
lcfrlem38.sp |
|- N = ( LSpan ` U ) |
20 |
|
lcfrlem38.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
21 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
22 |
1 3 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
24 |
1 2 3 23 6 7 8 10 11 12 14
|
lcfrlem4 |
|- ( ph -> X e. ( Base ` U ) ) |
25 |
|
eldifsn |
|- ( X e. ( ( Base ` U ) \ { .0. } ) <-> ( X e. ( Base ` U ) /\ X =/= .0. ) ) |
26 |
24 17 25
|
sylanbrc |
|- ( ph -> X e. ( ( Base ` U ) \ { .0. } ) ) |
27 |
1 2 3 23 6 7 8 10 11 12 15
|
lcfrlem4 |
|- ( ph -> Y e. ( Base ` U ) ) |
28 |
|
eldifsn |
|- ( Y e. ( ( Base ` U ) \ { .0. } ) <-> ( Y e. ( Base ` U ) /\ Y =/= .0. ) ) |
29 |
27 18 28
|
sylanbrc |
|- ( ph -> Y e. ( ( Base ` U ) \ { .0. } ) ) |
30 |
1 2 3 23 4 16 19 21 11 26 29 20
|
lcfrlem21 |
|- ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. ( LSAtoms ` U ) ) |
31 |
16 21 22 30
|
lsateln0 |
|- ( ph -> E. i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) i =/= .0. ) |
32 |
11
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> ( K e. HL /\ W e. H ) ) |
33 |
12
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> G e. Q ) |
34 |
13
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> G C_ C ) |
35 |
14
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> X e. E ) |
36 |
15
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> Y e. E ) |
37 |
17
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> X =/= .0. ) |
38 |
18
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> Y =/= .0. ) |
39 |
20
|
3ad2ant1 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
40 |
|
eqid |
|- ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
41 |
|
simp2 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) ) |
42 |
|
simp3 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> i =/= .0. ) |
43 |
1 2 3 4 5 6 7 8 9 10 32 33 34 35 36 16 37 38 19 39 40 41 42
|
lcfrlem39 |
|- ( ( ph /\ i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) /\ i =/= .0. ) -> ( X .+ Y ) e. E ) |
44 |
43
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) i =/= .0. -> ( X .+ Y ) e. E ) ) |
45 |
31 44
|
mpd |
|- ( ph -> ( X .+ Y ) e. E ) |