Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem38.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem38.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem38.p |
|- .+ = ( +g ` U ) |
5 |
|
lcfrlem38.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfrlem38.l |
|- L = ( LKer ` U ) |
7 |
|
lcfrlem38.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem38.q |
|- Q = ( LSubSp ` D ) |
9 |
|
lcfrlem38.c |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfrlem38.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfrlem38.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfrlem38.g |
|- ( ph -> G e. Q ) |
13 |
|
lcfrlem38.gs |
|- ( ph -> G C_ C ) |
14 |
|
lcfrlem38.xe |
|- ( ph -> X e. E ) |
15 |
|
lcfrlem38.ye |
|- ( ph -> Y e. E ) |
16 |
|
lcfrlem38.z |
|- .0. = ( 0g ` U ) |
17 |
|
lcfrlem38.x |
|- ( ph -> X =/= .0. ) |
18 |
|
lcfrlem38.y |
|- ( ph -> Y =/= .0. ) |
19 |
|
lcfrlem38.sp |
|- N = ( LSpan ` U ) |
20 |
|
lcfrlem38.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
21 |
|
lcfrlem38.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
22 |
|
lcfrlem38.i |
|- ( ph -> I e. B ) |
23 |
|
lcfrlem38.n |
|- ( ph -> I =/= .0. ) |
24 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
25 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
26 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
27 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
28 |
|
oveq1 |
|- ( j = k -> ( j ( .s ` U ) x ) = ( k ( .s ` U ) x ) ) |
29 |
28
|
oveq2d |
|- ( j = k -> ( w .+ ( j ( .s ` U ) x ) ) = ( w .+ ( k ( .s ` U ) x ) ) ) |
30 |
29
|
eqeq2d |
|- ( j = k -> ( v = ( w .+ ( j ( .s ` U ) x ) ) <-> v = ( w .+ ( k ( .s ` U ) x ) ) ) ) |
31 |
30
|
rexbidv |
|- ( j = k -> ( E. w e. ( ._|_ ` { x } ) v = ( w .+ ( j ( .s ` U ) x ) ) <-> E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k ( .s ` U ) x ) ) ) ) |
32 |
31
|
cbvriotavw |
|- ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( j ( .s ` U ) x ) ) ) = ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k ( .s ` U ) x ) ) ) |
33 |
32
|
mpteq2i |
|- ( v e. ( Base ` U ) |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( j ( .s ` U ) x ) ) ) ) = ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k ( .s ` U ) x ) ) ) ) |
34 |
33
|
mpteq2i |
|- ( x e. ( ( Base ` U ) \ { .0. } ) |-> ( v e. ( Base ` U ) |-> ( iota_ j e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( j ( .s ` U ) x ) ) ) ) ) = ( x e. ( ( Base ` U ) \ { .0. } ) |-> ( v e. ( Base ` U ) |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k ( .s ` U ) x ) ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 34
|
lcfrlem38 |
|- ( ph -> ( X .+ Y ) e. E ) |