Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem38.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem38.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem38.p |
|- .+ = ( +g ` U ) |
5 |
|
lcfrlem38.f |
|- F = ( LFnl ` U ) |
6 |
|
lcfrlem38.l |
|- L = ( LKer ` U ) |
7 |
|
lcfrlem38.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem38.q |
|- Q = ( LSubSp ` D ) |
9 |
|
lcfrlem38.c |
|- C = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
10 |
|
lcfrlem38.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
11 |
|
lcfrlem38.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
lcfrlem38.g |
|- ( ph -> G e. Q ) |
13 |
|
lcfrlem38.gs |
|- ( ph -> G C_ C ) |
14 |
|
lcfrlem38.xe |
|- ( ph -> X e. E ) |
15 |
|
lcfrlem38.ye |
|- ( ph -> Y e. E ) |
16 |
|
lcfrlem38.z |
|- .0. = ( 0g ` U ) |
17 |
|
lcfrlem38.x |
|- ( ph -> X =/= .0. ) |
18 |
|
lcfrlem38.y |
|- ( ph -> Y =/= .0. ) |
19 |
|
lcfrlem38.sp |
|- N = ( LSpan ` U ) |
20 |
|
lcfrlem38.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
21 |
|
lcfrlem38.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
22 |
|
lcfrlem38.i |
|- ( ph -> I e. B ) |
23 |
|
lcfrlem38.n |
|- ( ph -> I =/= .0. ) |
24 |
|
lcfrlem38.v |
|- V = ( Base ` U ) |
25 |
|
lcfrlem38.t |
|- .x. = ( .s ` U ) |
26 |
|
lcfrlem38.s |
|- S = ( Scalar ` U ) |
27 |
|
lcfrlem38.r |
|- R = ( Base ` S ) |
28 |
|
lcfrlem38.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
29 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
30 |
11
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> ( K e. HL /\ W e. H ) ) |
31 |
1 2 3 24 6 7 8 10 11 12 14
|
lcfrlem4 |
|- ( ph -> X e. V ) |
32 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
33 |
31 17 32
|
sylanbrc |
|- ( ph -> X e. ( V \ { .0. } ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> X e. ( V \ { .0. } ) ) |
35 |
1 2 3 24 6 7 8 10 11 12 15
|
lcfrlem4 |
|- ( ph -> Y e. V ) |
36 |
|
eldifsn |
|- ( Y e. ( V \ { .0. } ) <-> ( Y e. V /\ Y =/= .0. ) ) |
37 |
35 18 36
|
sylanbrc |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> Y e. ( V \ { .0. } ) ) |
39 |
20
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
40 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
41 |
22
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> I e. B ) |
42 |
|
simpr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> ( ( J ` Y ) ` I ) = ( 0g ` S ) ) |
43 |
23
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> I =/= .0. ) |
44 |
12 8
|
eleqtrdi |
|- ( ph -> G e. ( LSubSp ` D ) ) |
45 |
44
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> G e. ( LSubSp ` D ) ) |
46 |
13 9
|
sseqtrdi |
|- ( ph -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
47 |
46
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
48 |
14
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> X e. E ) |
49 |
15
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> Y e. E ) |
50 |
1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49
|
lcfrlem27 |
|- ( ( ph /\ ( ( J ` Y ) ` I ) = ( 0g ` S ) ) -> ( X .+ Y ) e. E ) |
51 |
11
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> ( K e. HL /\ W e. H ) ) |
52 |
33
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> X e. ( V \ { .0. } ) ) |
53 |
37
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> Y e. ( V \ { .0. } ) ) |
54 |
20
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
55 |
22
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> I e. B ) |
56 |
|
simpr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) |
57 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
58 |
|
eqid |
|- ( -g ` D ) = ( -g ` D ) |
59 |
|
eqid |
|- ( ( J ` X ) ( -g ` D ) ( ( ( ( invr ` S ) ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( ( J ` X ) ( -g ` D ) ( ( ( ( invr ` S ) ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
60 |
44
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> G e. ( LSubSp ` D ) ) |
61 |
46
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
62 |
14
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> X e. E ) |
63 |
15
|
adantr |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> Y e. E ) |
64 |
1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63
|
lcfrlem37 |
|- ( ( ph /\ ( ( J ` Y ) ` I ) =/= ( 0g ` S ) ) -> ( X .+ Y ) e. E ) |
65 |
50 64
|
pm2.61dane |
|- ( ph -> ( X .+ Y ) e. E ) |