Description: Lemma for lcfr . Combine lcfrlem27 and lcfrlem37 . (Contributed by NM, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem38.h | |
|
lcfrlem38.o | |
||
lcfrlem38.u | |
||
lcfrlem38.p | |
||
lcfrlem38.f | |
||
lcfrlem38.l | |
||
lcfrlem38.d | |
||
lcfrlem38.q | |
||
lcfrlem38.c | |
||
lcfrlem38.e | |
||
lcfrlem38.k | |
||
lcfrlem38.g | |
||
lcfrlem38.gs | |
||
lcfrlem38.xe | |
||
lcfrlem38.ye | |
||
lcfrlem38.z | |
||
lcfrlem38.x | |
||
lcfrlem38.y | |
||
lcfrlem38.sp | |
||
lcfrlem38.ne | |
||
lcfrlem38.b | |
||
lcfrlem38.i | |
||
lcfrlem38.n | |
||
lcfrlem38.v | |
||
lcfrlem38.t | |
||
lcfrlem38.s | |
||
lcfrlem38.r | |
||
lcfrlem38.j | |
||
Assertion | lcfrlem38 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | |
|
2 | lcfrlem38.o | |
|
3 | lcfrlem38.u | |
|
4 | lcfrlem38.p | |
|
5 | lcfrlem38.f | |
|
6 | lcfrlem38.l | |
|
7 | lcfrlem38.d | |
|
8 | lcfrlem38.q | |
|
9 | lcfrlem38.c | |
|
10 | lcfrlem38.e | |
|
11 | lcfrlem38.k | |
|
12 | lcfrlem38.g | |
|
13 | lcfrlem38.gs | |
|
14 | lcfrlem38.xe | |
|
15 | lcfrlem38.ye | |
|
16 | lcfrlem38.z | |
|
17 | lcfrlem38.x | |
|
18 | lcfrlem38.y | |
|
19 | lcfrlem38.sp | |
|
20 | lcfrlem38.ne | |
|
21 | lcfrlem38.b | |
|
22 | lcfrlem38.i | |
|
23 | lcfrlem38.n | |
|
24 | lcfrlem38.v | |
|
25 | lcfrlem38.t | |
|
26 | lcfrlem38.s | |
|
27 | lcfrlem38.r | |
|
28 | lcfrlem38.j | |
|
29 | eqid | |
|
30 | 11 | adantr | |
31 | 1 2 3 24 6 7 8 10 11 12 14 | lcfrlem4 | |
32 | eldifsn | |
|
33 | 31 17 32 | sylanbrc | |
34 | 33 | adantr | |
35 | 1 2 3 24 6 7 8 10 11 12 15 | lcfrlem4 | |
36 | eldifsn | |
|
37 | 35 18 36 | sylanbrc | |
38 | 37 | adantr | |
39 | 20 | adantr | |
40 | eqid | |
|
41 | 22 | adantr | |
42 | simpr | |
|
43 | 23 | adantr | |
44 | 12 8 | eleqtrdi | |
45 | 44 | adantr | |
46 | 13 9 | sseqtrdi | |
47 | 46 | adantr | |
48 | 14 | adantr | |
49 | 15 | adantr | |
50 | 1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49 | lcfrlem27 | |
51 | 11 | adantr | |
52 | 33 | adantr | |
53 | 37 | adantr | |
54 | 20 | adantr | |
55 | 22 | adantr | |
56 | simpr | |
|
57 | eqid | |
|
58 | eqid | |
|
59 | eqid | |
|
60 | 44 | adantr | |
61 | 46 | adantr | |
62 | 14 | adantr | |
63 | 15 | adantr | |
64 | 1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63 | lcfrlem37 | |
65 | 50 64 | pm2.61dane | |