| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem38.h |
|
| 2 |
|
lcfrlem38.o |
|
| 3 |
|
lcfrlem38.u |
|
| 4 |
|
lcfrlem38.p |
|
| 5 |
|
lcfrlem38.f |
|
| 6 |
|
lcfrlem38.l |
|
| 7 |
|
lcfrlem38.d |
|
| 8 |
|
lcfrlem38.q |
|
| 9 |
|
lcfrlem38.c |
|
| 10 |
|
lcfrlem38.e |
|
| 11 |
|
lcfrlem38.k |
|
| 12 |
|
lcfrlem38.g |
|
| 13 |
|
lcfrlem38.gs |
|
| 14 |
|
lcfrlem38.xe |
|
| 15 |
|
lcfrlem38.ye |
|
| 16 |
|
lcfrlem38.z |
|
| 17 |
|
lcfrlem38.x |
|
| 18 |
|
lcfrlem38.y |
|
| 19 |
|
lcfrlem38.sp |
|
| 20 |
|
lcfrlem38.ne |
|
| 21 |
|
lcfrlem38.b |
|
| 22 |
|
lcfrlem38.i |
|
| 23 |
|
lcfrlem38.n |
|
| 24 |
|
lcfrlem38.v |
|
| 25 |
|
lcfrlem38.t |
|
| 26 |
|
lcfrlem38.s |
|
| 27 |
|
lcfrlem38.r |
|
| 28 |
|
lcfrlem38.j |
|
| 29 |
|
eqid |
|
| 30 |
11
|
adantr |
|
| 31 |
1 2 3 24 6 7 8 10 11 12 14
|
lcfrlem4 |
|
| 32 |
|
eldifsn |
|
| 33 |
31 17 32
|
sylanbrc |
|
| 34 |
33
|
adantr |
|
| 35 |
1 2 3 24 6 7 8 10 11 12 15
|
lcfrlem4 |
|
| 36 |
|
eldifsn |
|
| 37 |
35 18 36
|
sylanbrc |
|
| 38 |
37
|
adantr |
|
| 39 |
20
|
adantr |
|
| 40 |
|
eqid |
|
| 41 |
22
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
23
|
adantr |
|
| 44 |
12 8
|
eleqtrdi |
|
| 45 |
44
|
adantr |
|
| 46 |
13 9
|
sseqtrdi |
|
| 47 |
46
|
adantr |
|
| 48 |
14
|
adantr |
|
| 49 |
15
|
adantr |
|
| 50 |
1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49
|
lcfrlem27 |
|
| 51 |
11
|
adantr |
|
| 52 |
33
|
adantr |
|
| 53 |
37
|
adantr |
|
| 54 |
20
|
adantr |
|
| 55 |
22
|
adantr |
|
| 56 |
|
simpr |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
44
|
adantr |
|
| 61 |
46
|
adantr |
|
| 62 |
14
|
adantr |
|
| 63 |
15
|
adantr |
|
| 64 |
1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63
|
lcfrlem37 |
|
| 65 |
50 64
|
pm2.61dane |
|