Metamath Proof Explorer


Theorem lcfrlem38

Description: Lemma for lcfr . Combine lcfrlem27 and lcfrlem37 . (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h H=LHypK
lcfrlem38.o ˙=ocHKW
lcfrlem38.u U=DVecHKW
lcfrlem38.p +˙=+U
lcfrlem38.f F=LFnlU
lcfrlem38.l L=LKerU
lcfrlem38.d D=LDualU
lcfrlem38.q Q=LSubSpD
lcfrlem38.c C=fLFnlU|˙˙Lf=Lf
lcfrlem38.e E=gG˙Lg
lcfrlem38.k φKHLWH
lcfrlem38.g φGQ
lcfrlem38.gs φGC
lcfrlem38.xe φXE
lcfrlem38.ye φYE
lcfrlem38.z 0˙=0U
lcfrlem38.x φX0˙
lcfrlem38.y φY0˙
lcfrlem38.sp N=LSpanU
lcfrlem38.ne φNXNY
lcfrlem38.b B=NXY˙X+˙Y
lcfrlem38.i φIB
lcfrlem38.n φI0˙
lcfrlem38.v V=BaseU
lcfrlem38.t ·˙=U
lcfrlem38.s S=ScalarU
lcfrlem38.r R=BaseS
lcfrlem38.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
Assertion lcfrlem38 φX+˙YE

Proof

Step Hyp Ref Expression
1 lcfrlem38.h H=LHypK
2 lcfrlem38.o ˙=ocHKW
3 lcfrlem38.u U=DVecHKW
4 lcfrlem38.p +˙=+U
5 lcfrlem38.f F=LFnlU
6 lcfrlem38.l L=LKerU
7 lcfrlem38.d D=LDualU
8 lcfrlem38.q Q=LSubSpD
9 lcfrlem38.c C=fLFnlU|˙˙Lf=Lf
10 lcfrlem38.e E=gG˙Lg
11 lcfrlem38.k φKHLWH
12 lcfrlem38.g φGQ
13 lcfrlem38.gs φGC
14 lcfrlem38.xe φXE
15 lcfrlem38.ye φYE
16 lcfrlem38.z 0˙=0U
17 lcfrlem38.x φX0˙
18 lcfrlem38.y φY0˙
19 lcfrlem38.sp N=LSpanU
20 lcfrlem38.ne φNXNY
21 lcfrlem38.b B=NXY˙X+˙Y
22 lcfrlem38.i φIB
23 lcfrlem38.n φI0˙
24 lcfrlem38.v V=BaseU
25 lcfrlem38.t ·˙=U
26 lcfrlem38.s S=ScalarU
27 lcfrlem38.r R=BaseS
28 lcfrlem38.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
29 eqid LSAtomsU=LSAtomsU
30 11 adantr φJYI=0SKHLWH
31 1 2 3 24 6 7 8 10 11 12 14 lcfrlem4 φXV
32 eldifsn XV0˙XVX0˙
33 31 17 32 sylanbrc φXV0˙
34 33 adantr φJYI=0SXV0˙
35 1 2 3 24 6 7 8 10 11 12 15 lcfrlem4 φYV
36 eldifsn YV0˙YVY0˙
37 35 18 36 sylanbrc φYV0˙
38 37 adantr φJYI=0SYV0˙
39 20 adantr φJYI=0SNXNY
40 eqid 0S=0S
41 22 adantr φJYI=0SIB
42 simpr φJYI=0SJYI=0S
43 23 adantr φJYI=0SI0˙
44 12 8 eleqtrdi φGLSubSpD
45 44 adantr φJYI=0SGLSubSpD
46 13 9 sseqtrdi φGfLFnlU|˙˙Lf=Lf
47 46 adantr φJYI=0SGfLFnlU|˙˙Lf=Lf
48 14 adantr φJYI=0SXE
49 15 adantr φJYI=0SYE
50 1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49 lcfrlem27 φJYI=0SX+˙YE
51 11 adantr φJYI0SKHLWH
52 33 adantr φJYI0SXV0˙
53 37 adantr φJYI0SYV0˙
54 20 adantr φJYI0SNXNY
55 22 adantr φJYI0SIB
56 simpr φJYI0SJYI0S
57 eqid invrS=invrS
58 eqid -D=-D
59 eqid JX-DinvrSJYISJXIDJY=JX-DinvrSJYISJXIDJY
60 44 adantr φJYI0SGLSubSpD
61 46 adantr φJYI0SGfLFnlU|˙˙Lf=Lf
62 14 adantr φJYI0SXE
63 15 adantr φJYI0SYE
64 1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63 lcfrlem37 φJYI0SX+˙YE
65 50 64 pm2.61dane φX+˙YE