Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
|
2 |
|
lcfrlem38.o |
|
3 |
|
lcfrlem38.u |
|
4 |
|
lcfrlem38.p |
|
5 |
|
lcfrlem38.f |
|
6 |
|
lcfrlem38.l |
|
7 |
|
lcfrlem38.d |
|
8 |
|
lcfrlem38.q |
|
9 |
|
lcfrlem38.c |
|
10 |
|
lcfrlem38.e |
|
11 |
|
lcfrlem38.k |
|
12 |
|
lcfrlem38.g |
|
13 |
|
lcfrlem38.gs |
|
14 |
|
lcfrlem38.xe |
|
15 |
|
lcfrlem38.ye |
|
16 |
|
lcfrlem38.z |
|
17 |
|
lcfrlem38.x |
|
18 |
|
lcfrlem38.y |
|
19 |
|
lcfrlem38.sp |
|
20 |
|
lcfrlem38.ne |
|
21 |
|
lcfrlem38.b |
|
22 |
|
lcfrlem38.i |
|
23 |
|
lcfrlem38.n |
|
24 |
|
lcfrlem38.v |
|
25 |
|
lcfrlem38.t |
|
26 |
|
lcfrlem38.s |
|
27 |
|
lcfrlem38.r |
|
28 |
|
lcfrlem38.j |
|
29 |
|
eqid |
|
30 |
11
|
adantr |
|
31 |
1 2 3 24 6 7 8 10 11 12 14
|
lcfrlem4 |
|
32 |
|
eldifsn |
|
33 |
31 17 32
|
sylanbrc |
|
34 |
33
|
adantr |
|
35 |
1 2 3 24 6 7 8 10 11 12 15
|
lcfrlem4 |
|
36 |
|
eldifsn |
|
37 |
35 18 36
|
sylanbrc |
|
38 |
37
|
adantr |
|
39 |
20
|
adantr |
|
40 |
|
eqid |
|
41 |
22
|
adantr |
|
42 |
|
simpr |
|
43 |
23
|
adantr |
|
44 |
12 8
|
eleqtrdi |
|
45 |
44
|
adantr |
|
46 |
13 9
|
sseqtrdi |
|
47 |
46
|
adantr |
|
48 |
14
|
adantr |
|
49 |
15
|
adantr |
|
50 |
1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49
|
lcfrlem27 |
|
51 |
11
|
adantr |
|
52 |
33
|
adantr |
|
53 |
37
|
adantr |
|
54 |
20
|
adantr |
|
55 |
22
|
adantr |
|
56 |
|
simpr |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
44
|
adantr |
|
61 |
46
|
adantr |
|
62 |
14
|
adantr |
|
63 |
15
|
adantr |
|
64 |
1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63
|
lcfrlem37 |
|
65 |
50 64
|
pm2.61dane |
|