Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem38.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem38.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem38.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
lcfrlem38.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfrlem38.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfrlem38.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem38.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfrlem38.c |
⊢ 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
|
lcfrlem38.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
11 |
|
lcfrlem38.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lcfrlem38.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
13 |
|
lcfrlem38.gs |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
14 |
|
lcfrlem38.xe |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
15 |
|
lcfrlem38.ye |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
16 |
|
lcfrlem38.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
17 |
|
lcfrlem38.x |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
18 |
|
lcfrlem38.y |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
19 |
|
lcfrlem38.sp |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
20 |
|
lcfrlem38.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
21 |
|
lcfrlem38.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
22 |
|
lcfrlem38.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
23 |
|
lcfrlem38.n |
⊢ ( 𝜑 → 𝐼 ≠ 0 ) |
24 |
|
lcfrlem38.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
25 |
|
lcfrlem38.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
26 |
|
lcfrlem38.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
27 |
|
lcfrlem38.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
28 |
|
lcfrlem38.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
29 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
1 2 3 24 6 7 8 10 11 12 14
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
32 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
33 |
31 17 32
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
1 2 3 24 6 7 8 10 11 12 15
|
lcfrlem4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
36 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) ) |
37 |
35 18 36
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
39 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
41 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝐼 ∈ 𝐵 ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) |
43 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝐼 ≠ 0 ) |
44 |
12 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) ) |
46 |
13 9
|
sseqtrdi |
⊢ ( 𝜑 → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
48 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝑋 ∈ 𝐸 ) |
49 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ 𝐸 ) |
50 |
1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49
|
lcfrlem27 |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) = ( 0g ‘ 𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
51 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
52 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
53 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
54 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
55 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝐼 ∈ 𝐵 ) |
56 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) |
57 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
58 |
|
eqid |
⊢ ( -g ‘ 𝐷 ) = ( -g ‘ 𝐷 ) |
59 |
|
eqid |
⊢ ( ( 𝐽 ‘ 𝑋 ) ( -g ‘ 𝐷 ) ( ( ( ( invr ‘ 𝑆 ) ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) = ( ( 𝐽 ‘ 𝑋 ) ( -g ‘ 𝐷 ) ( ( ( ( invr ‘ 𝑆 ) ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) |
60 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) ) |
61 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
62 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝑋 ∈ 𝐸 ) |
63 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ 𝐸 ) |
64 |
1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63
|
lcfrlem37 |
⊢ ( ( 𝜑 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |
65 |
50 64
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |