Metamath Proof Explorer


Theorem lcfrlem38

Description: Lemma for lcfr . Combine lcfrlem27 and lcfrlem37 . (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem38.p + = ( +g𝑈 )
lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem38.g ( 𝜑𝐺𝑄 )
lcfrlem38.gs ( 𝜑𝐺𝐶 )
lcfrlem38.xe ( 𝜑𝑋𝐸 )
lcfrlem38.ye ( 𝜑𝑌𝐸 )
lcfrlem38.z 0 = ( 0g𝑈 )
lcfrlem38.x ( 𝜑𝑋0 )
lcfrlem38.y ( 𝜑𝑌0 )
lcfrlem38.sp 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem38.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem38.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem38.i ( 𝜑𝐼𝐵 )
lcfrlem38.n ( 𝜑𝐼0 )
lcfrlem38.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem38.t · = ( ·𝑠𝑈 )
lcfrlem38.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem38.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem38.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
Assertion lcfrlem38 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem38.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem38.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem38.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem38.p + = ( +g𝑈 )
5 lcfrlem38.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcfrlem38.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcfrlem38.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem38.q 𝑄 = ( LSubSp ‘ 𝐷 )
9 lcfrlem38.c 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
11 lcfrlem38.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 lcfrlem38.g ( 𝜑𝐺𝑄 )
13 lcfrlem38.gs ( 𝜑𝐺𝐶 )
14 lcfrlem38.xe ( 𝜑𝑋𝐸 )
15 lcfrlem38.ye ( 𝜑𝑌𝐸 )
16 lcfrlem38.z 0 = ( 0g𝑈 )
17 lcfrlem38.x ( 𝜑𝑋0 )
18 lcfrlem38.y ( 𝜑𝑌0 )
19 lcfrlem38.sp 𝑁 = ( LSpan ‘ 𝑈 )
20 lcfrlem38.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
21 lcfrlem38.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
22 lcfrlem38.i ( 𝜑𝐼𝐵 )
23 lcfrlem38.n ( 𝜑𝐼0 )
24 lcfrlem38.v 𝑉 = ( Base ‘ 𝑈 )
25 lcfrlem38.t · = ( ·𝑠𝑈 )
26 lcfrlem38.s 𝑆 = ( Scalar ‘ 𝑈 )
27 lcfrlem38.r 𝑅 = ( Base ‘ 𝑆 )
28 lcfrlem38.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
29 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
30 11 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 1 2 3 24 6 7 8 10 11 12 14 lcfrlem4 ( 𝜑𝑋𝑉 )
32 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋𝑉𝑋0 ) )
33 31 17 32 sylanbrc ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
34 33 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
35 1 2 3 24 6 7 8 10 11 12 15 lcfrlem4 ( 𝜑𝑌𝑉 )
36 eldifsn ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑌𝑉𝑌0 ) )
37 35 18 36 sylanbrc ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
38 37 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
39 20 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
40 eqid ( 0g𝑆 ) = ( 0g𝑆 )
41 22 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝐼𝐵 )
42 simpr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) )
43 23 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝐼0 )
44 12 8 eleqtrdi ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝐷 ) )
45 44 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) )
46 13 9 sseqtrdi ( 𝜑𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
47 46 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
48 14 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝑋𝐸 )
49 15 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → 𝑌𝐸 )
50 1 2 3 24 4 16 19 29 30 34 38 39 21 25 26 40 27 28 41 6 7 42 43 45 47 10 48 49 lcfrlem27 ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) = ( 0g𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
51 11 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
52 33 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
53 37 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
54 20 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
55 22 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝐼𝐵 )
56 simpr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) )
57 eqid ( invr𝑆 ) = ( invr𝑆 )
58 eqid ( -g𝐷 ) = ( -g𝐷 )
59 eqid ( ( 𝐽𝑋 ) ( -g𝐷 ) ( ( ( ( invr𝑆 ) ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( ( 𝐽𝑋 ) ( -g𝐷 ) ( ( ( ( invr𝑆 ) ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
60 44 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) )
61 46 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
62 14 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝑋𝐸 )
63 15 adantr ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → 𝑌𝐸 )
64 1 2 3 24 4 16 19 29 51 52 53 54 21 25 26 40 27 28 55 6 7 56 57 58 59 60 61 10 62 63 lcfrlem37 ( ( 𝜑 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ ( 0g𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐸 )
65 50 64 pm2.61dane ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )