Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
|
lcfrlem22.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
14 |
|
lcfrlem24.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
15 |
|
lcfrlem24.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
16 |
|
lcfrlem24.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
17 |
|
lcfrlem24.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
18 |
|
lcfrlem24.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
20 |
|
lcfrlem24.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
21 |
|
lcfrlem25.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
22 |
|
lcfrlem28.jn |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) |
23 |
|
lcfrlem29.i |
⊢ 𝐹 = ( invr ‘ 𝑆 ) |
24 |
|
lcfrlem30.m |
⊢ − = ( -g ‘ 𝐷 ) |
25 |
|
lcfrlem30.c |
⊢ 𝐶 = ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) |
26 |
|
lcfrlem37.g |
⊢ ( 𝜑 → 𝐺 ∈ ( LSubSp ‘ 𝐷 ) ) |
27 |
|
lcfrlem37.gs |
⊢ ( 𝜑 → 𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
28 |
|
lcfrlem37.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
29 |
|
lcfrlem37.xe |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
30 |
|
lcfrlem37.ye |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
31 |
|
eqid |
⊢ ( LSubSp ‘ 𝐷 ) = ( LSubSp ‘ 𝐷 ) |
32 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
33 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
35 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
36 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
37 |
10 36
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
38 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐸 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐸 ∧ 𝑋 ≠ 0 ) ) |
39 |
29 37 38
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 ∖ { 0 } ) ) |
40 |
1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39
|
lcfrlem16 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) |
41 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ∈ 𝑅 ) |
43 |
|
eldifsni |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) |
44 |
11 43
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
45 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝐸 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝐸 ∧ 𝑌 ≠ 0 ) ) |
46 |
30 44 45
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐸 ∖ { 0 } ) ) |
47 |
1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46
|
lcfrlem16 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑌 ) ∈ 𝐺 ) |
48 |
15 17 21 41 31 32 26 42 47
|
ldualssvscl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ∈ 𝐺 ) |
49 |
21 24 31 32 26 40 48
|
ldualssvsubcl |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) ∈ 𝐺 ) |
50 |
25 49
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ 𝐺 ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem36 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐶 ) ) ) |
52 |
|
2fveq3 |
⊢ ( 𝑔 = 𝐶 → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) = ( ⊥ ‘ ( 𝐿 ‘ 𝐶 ) ) ) |
53 |
52
|
eleq2d |
⊢ ( 𝑔 = 𝐶 → ( ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐶 ) ) ) ) |
54 |
53
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝐺 ∧ ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝐶 ) ) ) → ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
55 |
50 51 54
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
56 |
|
eliun |
⊢ ( ( 𝑋 + 𝑌 ) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐺 ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
57 |
55 56
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
58 |
57 28
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |