Metamath Proof Explorer


Theorem lcfrlem37

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem29.i 𝐹 = ( invr𝑆 )
lcfrlem30.m = ( -g𝐷 )
lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
lcfrlem37.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝐷 ) )
lcfrlem37.gs ( 𝜑𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem37.xe ( 𝜑𝑋𝐸 )
lcfrlem37.ye ( 𝜑𝑌𝐸 )
Assertion lcfrlem37 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 lcfrlem29.i 𝐹 = ( invr𝑆 )
24 lcfrlem30.m = ( -g𝐷 )
25 lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
26 lcfrlem37.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝐷 ) )
27 lcfrlem37.gs ( 𝜑𝐺 ⊆ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
28 lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
29 lcfrlem37.xe ( 𝜑𝑋𝐸 )
30 lcfrlem37.ye ( 𝜑𝑌𝐸 )
31 eqid ( LSubSp ‘ 𝐷 ) = ( LSubSp ‘ 𝐷 )
32 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
33 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
34 eqid ( 0g𝐷 ) = ( 0g𝐷 )
35 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
36 eldifsni ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋0 )
37 10 36 syl ( 𝜑𝑋0 )
38 eldifsn ( 𝑋 ∈ ( 𝐸 ∖ { 0 } ) ↔ ( 𝑋𝐸𝑋0 ) )
39 29 37 38 sylanbrc ( 𝜑𝑋 ∈ ( 𝐸 ∖ { 0 } ) )
40 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39 lcfrlem16 ( 𝜑 → ( 𝐽𝑋 ) ∈ 𝐺 )
41 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem29 ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ∈ 𝑅 )
43 eldifsni ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌0 )
44 11 43 syl ( 𝜑𝑌0 )
45 eldifsn ( 𝑌 ∈ ( 𝐸 ∖ { 0 } ) ↔ ( 𝑌𝐸𝑌0 ) )
46 30 44 45 sylanbrc ( 𝜑𝑌 ∈ ( 𝐸 ∖ { 0 } ) )
47 1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46 lcfrlem16 ( 𝜑 → ( 𝐽𝑌 ) ∈ 𝐺 )
48 15 17 21 41 31 32 26 42 47 ldualssvscl ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ∈ 𝐺 )
49 21 24 31 32 26 40 48 ldualssvsubcl ( 𝜑 → ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) ∈ 𝐺 )
50 25 49 eqeltrid ( 𝜑𝐶𝐺 )
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem36 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝐶 ) ) )
52 2fveq3 ( 𝑔 = 𝐶 → ( ‘ ( 𝐿𝑔 ) ) = ( ‘ ( 𝐿𝐶 ) ) )
53 52 eleq2d ( 𝑔 = 𝐶 → ( ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) ↔ ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝐶 ) ) ) )
54 53 rspcev ( ( 𝐶𝐺 ∧ ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝐶 ) ) ) → ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
55 50 51 54 syl2anc ( 𝜑 → ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
56 eliun ( ( 𝑋 + 𝑌 ) ∈ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ↔ ∃ 𝑔𝐺 ( 𝑋 + 𝑌 ) ∈ ( ‘ ( 𝐿𝑔 ) ) )
57 55 56 sylibr ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) )
58 57 28 eleqtrrdi ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 )