Metamath Proof Explorer


Theorem lcfrlem16

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
lcf1o.a + = ( +g𝑈 )
lcf1o.t · = ( ·𝑠𝑈 )
lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
lcf1o.z 0 = ( 0g𝑈 )
lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
lcf1o.q 𝑄 = ( 0g𝐷 )
lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem16.p 𝑃 = ( LSubSp ‘ 𝐷 )
lcfrlem16.g ( 𝜑𝐺𝑃 )
lcfrlem16.gs ( 𝜑𝐺𝐶 )
lcfrlem16.m 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
lcfrlem16.x ( 𝜑𝑋 ∈ ( 𝐸 ∖ { 0 } ) )
Assertion lcfrlem16 ( 𝜑 → ( 𝐽𝑋 ) ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 lcf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcf1o.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcf1o.v 𝑉 = ( Base ‘ 𝑈 )
5 lcf1o.a + = ( +g𝑈 )
6 lcf1o.t · = ( ·𝑠𝑈 )
7 lcf1o.s 𝑆 = ( Scalar ‘ 𝑈 )
8 lcf1o.r 𝑅 = ( Base ‘ 𝑆 )
9 lcf1o.z 0 = ( 0g𝑈 )
10 lcf1o.f 𝐹 = ( LFnl ‘ 𝑈 )
11 lcf1o.l 𝐿 = ( LKer ‘ 𝑈 )
12 lcf1o.d 𝐷 = ( LDual ‘ 𝑈 )
13 lcf1o.q 𝑄 = ( 0g𝐷 )
14 lcf1o.c 𝐶 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
15 lcf1o.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
16 lcflo.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 lcfrlem16.p 𝑃 = ( LSubSp ‘ 𝐷 )
18 lcfrlem16.g ( 𝜑𝐺𝑃 )
19 lcfrlem16.gs ( 𝜑𝐺𝐶 )
20 lcfrlem16.m 𝐸 = 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) )
21 lcfrlem16.x ( 𝜑𝑋 ∈ ( 𝐸 ∖ { 0 } ) )
22 21 eldifad ( 𝜑𝑋𝐸 )
23 22 20 eleqtrdi ( 𝜑𝑋 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) )
24 eliun ( 𝑋 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ↔ ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
25 23 24 sylib ( 𝜑 → ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
26 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
27 1 3 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
28 27 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑈 ∈ LVec )
29 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
30 29 17 lssel ( ( 𝐺𝑃𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
31 18 30 sylan ( ( 𝜑𝑔𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) )
32 1 3 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
33 10 12 29 32 ldualvbase ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 )
34 33 adantr ( ( 𝜑𝑔𝐺 ) → ( Base ‘ 𝐷 ) = 𝐹 )
35 31 34 eleqtrd ( ( 𝜑𝑔𝐺 ) → 𝑔𝐹 )
36 35 3adant3 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑔𝐹 )
37 16 adantr ( ( 𝜑𝑔𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
38 32 adantr ( ( 𝜑𝑔𝐺 ) → 𝑈 ∈ LMod )
39 4 10 11 38 35 lkrssv ( ( 𝜑𝑔𝐺 ) → ( 𝐿𝑔 ) ⊆ 𝑉 )
40 1 3 4 2 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿𝑔 ) ⊆ 𝑉 ) → ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
41 37 39 40 syl2anc ( ( 𝜑𝑔𝐺 ) → ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
42 41 ralrimiva ( 𝜑 → ∀ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
43 iunss ( 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 ↔ ∀ 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
44 42 43 sylibr ( 𝜑 𝑔𝐺 ( ‘ ( 𝐿𝑔 ) ) ⊆ 𝑉 )
45 20 44 eqsstrid ( 𝜑𝐸𝑉 )
46 45 ssdifd ( 𝜑 → ( 𝐸 ∖ { 0 } ) ⊆ ( 𝑉 ∖ { 0 } ) )
47 46 21 sseldd ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem10 ( 𝜑 → ( 𝐽𝑋 ) ∈ 𝐹 )
49 48 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐽𝑋 ) ∈ 𝐹 )
50 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
51 16 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
52 simp3 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) )
53 eldifsni ( 𝑋 ∈ ( 𝐸 ∖ { 0 } ) → 𝑋0 )
54 21 53 syl ( 𝜑𝑋0 )
55 54 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑋0 )
56 eldifsn ( 𝑋 ∈ ( ( ‘ ( 𝐿𝑔 ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ∧ 𝑋0 ) )
57 52 55 56 sylanbrc ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑋 ∈ ( ( ‘ ( 𝐿𝑔 ) ) ∖ { 0 } ) )
58 1 2 3 4 9 10 11 51 36 57 50 dochsnkrlem2 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ‘ ( 𝐿𝑔 ) ) ∈ ( LSAtoms ‘ 𝑈 ) )
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem15 ( 𝜑𝑋 ∈ ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) )
60 eldifsn ( 𝑋 ∈ ( ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ∧ 𝑋0 ) )
61 59 54 60 sylanbrc ( 𝜑𝑋 ∈ ( ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ∖ { 0 } ) )
62 1 2 3 4 9 10 11 16 48 61 50 dochsnkrlem2 ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ∈ ( LSAtoms ‘ 𝑈 ) )
63 62 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ∈ ( LSAtoms ‘ 𝑈 ) )
64 59 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑋 ∈ ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) )
65 9 50 28 58 63 55 52 64 lsat2el ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ‘ ( 𝐿𝑔 ) ) = ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) )
66 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
67 19 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝐺𝐶 )
68 simp2 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑔𝐺 )
69 67 68 sseldd ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑔𝐶 )
70 1 66 2 3 10 11 14 51 36 lcfl5 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝑔𝐶 ↔ ( 𝐿𝑔 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) )
71 69 70 mpbid ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐿𝑔 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem13 ( 𝜑 → ( 𝐽𝑋 ) ∈ ( 𝐶 ∖ { 𝑄 } ) )
73 72 eldifad ( 𝜑 → ( 𝐽𝑋 ) ∈ 𝐶 )
74 1 66 2 3 10 11 14 16 48 lcfl5 ( 𝜑 → ( ( 𝐽𝑋 ) ∈ 𝐶 ↔ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) )
75 73 74 mpbid ( 𝜑 → ( 𝐿 ‘ ( 𝐽𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
76 75 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐿 ‘ ( 𝐽𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
77 1 66 2 51 71 76 doch11 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ( ‘ ( 𝐿𝑔 ) ) = ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) ↔ ( 𝐿𝑔 ) = ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) )
78 65 77 mpbid ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐿𝑔 ) = ( 𝐿 ‘ ( 𝐽𝑋 ) ) )
79 7 8 10 11 12 26 28 36 49 78 eqlkr4 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ∃ 𝑘𝑅 ( 𝐽𝑋 ) = ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) )
80 32 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝑈 ∈ LMod )
81 80 adantr ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → 𝑈 ∈ LMod )
82 18 3ad2ant1 ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → 𝐺𝑃 )
83 82 adantr ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → 𝐺𝑃 )
84 simpr ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → 𝑘𝑅 )
85 simpl2 ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → 𝑔𝐺 )
86 7 8 12 26 17 81 83 84 85 ldualssvscl ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) ∈ 𝐺 )
87 eleq1 ( ( 𝐽𝑋 ) = ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) → ( ( 𝐽𝑋 ) ∈ 𝐺 ↔ ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) ∈ 𝐺 ) )
88 86 87 syl5ibrcom ( ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) ∧ 𝑘𝑅 ) → ( ( 𝐽𝑋 ) = ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) → ( 𝐽𝑋 ) ∈ 𝐺 ) )
89 88 rexlimdva ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( ∃ 𝑘𝑅 ( 𝐽𝑋 ) = ( 𝑘 ( ·𝑠𝐷 ) 𝑔 ) → ( 𝐽𝑋 ) ∈ 𝐺 ) )
90 79 89 mpd ( ( 𝜑𝑔𝐺𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) ) → ( 𝐽𝑋 ) ∈ 𝐺 )
91 90 rexlimdv3a ( 𝜑 → ( ∃ 𝑔𝐺 𝑋 ∈ ( ‘ ( 𝐿𝑔 ) ) → ( 𝐽𝑋 ) ∈ 𝐺 ) )
92 25 91 mpd ( 𝜑 → ( 𝐽𝑋 ) ∈ 𝐺 )