Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcf1o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcf1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcf1o.a |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcf1o.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
lcf1o.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
8 |
|
lcf1o.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
9 |
|
lcf1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
10 |
|
lcf1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
lcf1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
12 |
|
lcf1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
13 |
|
lcf1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
14 |
|
lcf1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
15 |
|
lcf1o.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
16 |
|
lcflo.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
lcfrlem16.p |
⊢ 𝑃 = ( LSubSp ‘ 𝐷 ) |
18 |
|
lcfrlem16.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑃 ) |
19 |
|
lcfrlem16.gs |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
20 |
|
lcfrlem16.m |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
21 |
|
lcfrlem16.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 ∖ { 0 } ) ) |
22 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
23 |
22 20
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
24 |
|
eliun |
⊢ ( 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
25 |
23 24
|
sylib |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
27 |
1 3 16
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑈 ∈ LVec ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
30 |
29 17
|
lssel |
⊢ ( ( 𝐺 ∈ 𝑃 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
31 |
18 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ ( Base ‘ 𝐷 ) ) |
32 |
1 3 16
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
33 |
10 12 29 32
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = 𝐹 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( Base ‘ 𝐷 ) = 𝐹 ) |
35 |
31 34
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑔 ∈ 𝐹 ) |
36 |
35
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑔 ∈ 𝐹 ) |
37 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
38 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → 𝑈 ∈ LMod ) |
39 |
4 10 11 38 35
|
lkrssv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) |
40 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
41 |
37 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
43 |
|
iunss |
⊢ ( ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ↔ ∀ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
44 |
42 43
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ⊆ 𝑉 ) |
45 |
20 44
|
eqsstrid |
⊢ ( 𝜑 → 𝐸 ⊆ 𝑉 ) |
46 |
45
|
ssdifd |
⊢ ( 𝜑 → ( 𝐸 ∖ { 0 } ) ⊆ ( 𝑉 ∖ { 0 } ) ) |
47 |
46 21
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem10 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ 𝐹 ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝐹 ) |
50 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
51 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
52 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) |
53 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐸 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
54 |
21 53
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
55 |
54
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑋 ≠ 0 ) |
56 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∧ 𝑋 ≠ 0 ) ) |
57 |
52 55 56
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∖ { 0 } ) ) |
58 |
1 2 3 4 9 10 11 51 36 57 50
|
dochsnkrlem2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem15 |
⊢ ( 𝜑 → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ) |
60 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ∖ { 0 } ) ↔ ( 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ∧ 𝑋 ≠ 0 ) ) |
61 |
59 54 60
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ∖ { 0 } ) ) |
62 |
1 2 3 4 9 10 11 16 48 61 50
|
dochsnkrlem2 |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
63 |
62
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
64 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ) |
65 |
9 50 28 58 63 55 52 64
|
lsat2el |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ) |
66 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
67 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝐺 ⊆ 𝐶 ) |
68 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑔 ∈ 𝐺 ) |
69 |
67 68
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑔 ∈ 𝐶 ) |
70 |
1 66 2 3 10 11 14 51 36
|
lcfl5 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝑔 ∈ 𝐶 ↔ ( 𝐿 ‘ 𝑔 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
71 |
69 70
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem13 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ ( 𝐶 ∖ { 𝑄 } ) ) |
73 |
72
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ 𝐶 ) |
74 |
1 66 2 3 10 11 14 16 48
|
lcfl5 |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑋 ) ∈ 𝐶 ↔ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
75 |
73 74
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
76 |
75
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
77 |
1 66 2 51 71 76
|
doch11 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ↔ ( 𝐿 ‘ 𝑔 ) = ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) ) |
78 |
65 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐿 ‘ 𝑔 ) = ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) |
79 |
7 8 10 11 12 26 28 36 49 78
|
eqlkr4 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ∃ 𝑘 ∈ 𝑅 ( 𝐽 ‘ 𝑋 ) = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) ) |
80 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝑈 ∈ LMod ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → 𝑈 ∈ LMod ) |
82 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → 𝐺 ∈ 𝑃 ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → 𝐺 ∈ 𝑃 ) |
84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → 𝑘 ∈ 𝑅 ) |
85 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → 𝑔 ∈ 𝐺 ) |
86 |
7 8 12 26 17 81 83 84 85
|
ldualssvscl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) ∈ 𝐺 ) |
87 |
|
eleq1 |
⊢ ( ( 𝐽 ‘ 𝑋 ) = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) → ( ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ↔ ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) ∈ 𝐺 ) ) |
88 |
86 87
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → ( ( 𝐽 ‘ 𝑋 ) = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) ) |
89 |
88
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( ∃ 𝑘 ∈ 𝑅 ( 𝐽 ‘ 𝑋 ) = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝑔 ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) ) |
90 |
79 89
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) |
91 |
90
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) ) |
92 |
25 91
|
mpd |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ 𝐺 ) |